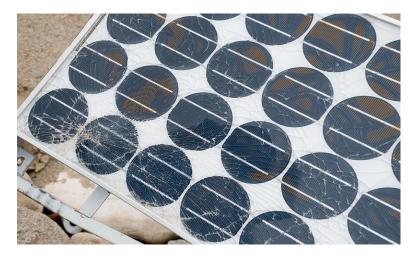
RESEARCH AND DIALOGUE FOR SUSTAINABLE SOCIETIES

Low-carbon technologies: Diffusion vs. Transfer National actions and international cooperation

Silvia Weko

Based on forthcoming paper: Bridging the low-carbon technology gap? Assessing energy initiatives for the Global South



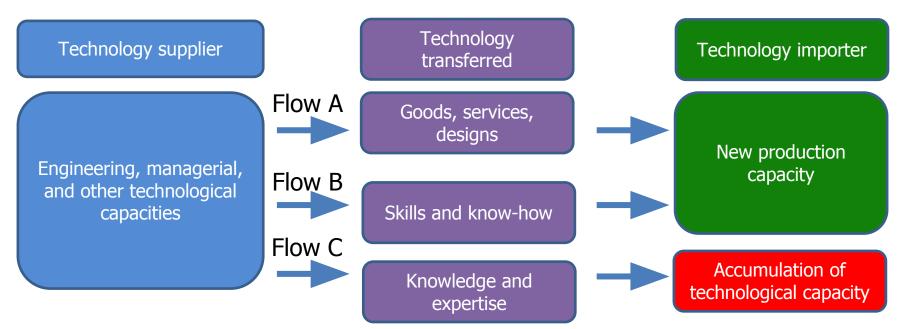
What is technology transfer?

"**learning to understand, utilize, and replicate the technology**, including the capacity to choose it and adapt it to local conditions and integrate it with indigenous technologies" (IPCC 2000, pp. 3).

Technology diffusion vs. technology transfer

Diffusion: hardware is adopted in a new location

Transfer: local knowledge and skills increase


□ higher development + (long-term) emissions reduction potential

Closing the low-carbon technology gap

- Intellectual property rights (IP) + highest-value activities concentrated in OECD, China
- Historical responsibility + justice issues
- Obligation to encourage tech transfer to developing countries under TRIPS (Art. 66.2)
 & Paris Agreement

IASS

Ockwell et al. 2010, based on Bell 1990

International tech transfer: solar PV technology

- First-mover advantage EU
- China as a success story: leader in manufacturing and installment, now research and development
- Most other developing countries use but do not produce technologies

Technology diffusion through Flow A

Flow A

• Firms operate in attractive markets: stable, profitable, large

Technology supplier	Technology importer
+ New markets and profits	 + New energy source + Rents from land use (often low) + Low-skill jobs: some construction, security, cleaning - Can't do own O&M, adapt to local conditions - Potential for failure and backlash

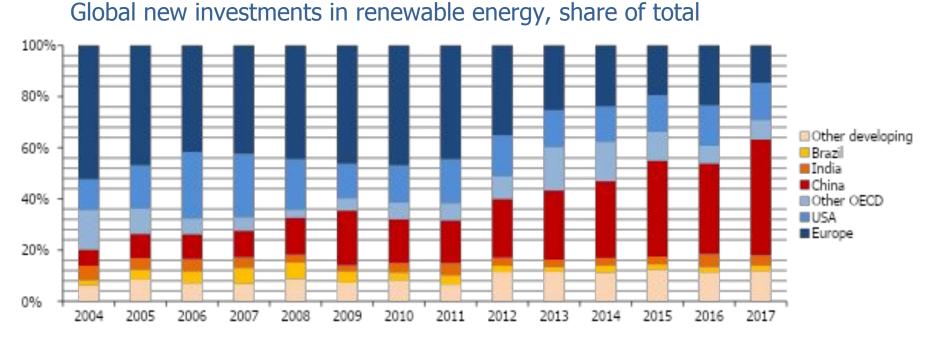
Company builds and

operates a wind farm in

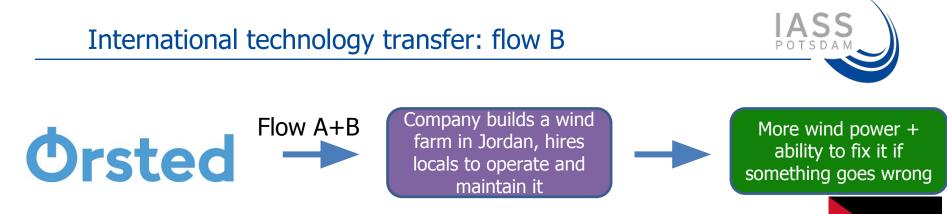
Jordan

Orsted

4



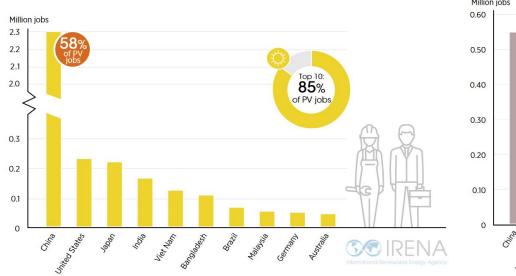
More wind power


*

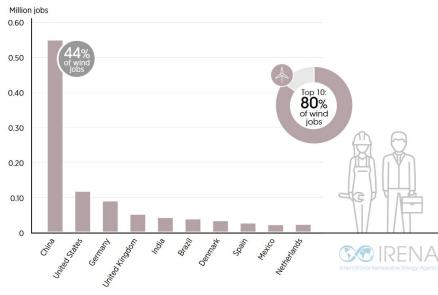
Left out of flow A: risky environments (e.g. political or economic instability), unattractive markets (low demand, infrastructure issues, weak property rights protections)

Potential solutions:

- Increasing attractiveness: de-risking, demand aggregation, improving infrastructure
- Generally: more funding for international mechanisms



Technology diffusion through Flow A+B


- Firms train and hire some locals if they have sufficient skills, for operation and maintenance of installations
- Firms go where there is little risk of losing control of value creation: property rights protections, fewer chances for reverse engineering and imitation

Technology supplier	Technology importer
+ New markets and profits	 + Sustained use of new energy source: how to integrate it into a system + Higher-skilled jobs

Left out of flow B: countries with lower-skilled workers, issues with property rights protections

Figure 5: Solar PV employment: Top 10 countries

Source: IRENA jobs database.

Figure 7: Wind employment: Top 10 countries

Potential solutions:

- Training and capacity-building programs
- Policy changes: some (low-risk) requirements for training and employment, *increasing* property rights protections (?)

International technology transfer: flow C

Flow C

Technology transfer is possible IF:

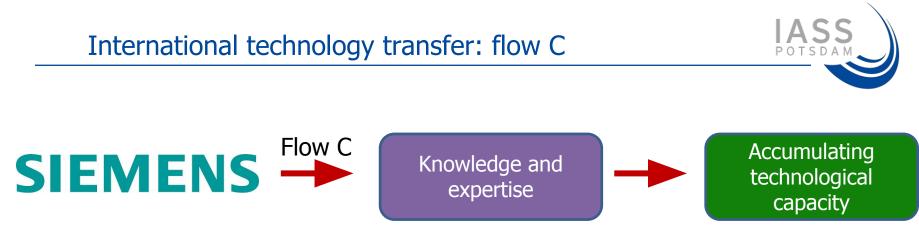
SIEMENS

- Local firms have *high absorptive capacities*
- Local firms are involved in processes requiring knowledge and expertise (e.g. manufacturing solar panels)
 - IF: government requirements
 - AND: cooperation benefits firm

Technology supplier	Technology importer
+ New markets and profits- New competitors, losing market share	 + Accumulating technological capacity + Developing new industry and innovations - Potential to lose attractiveness - Potential for trade conflicts

Knowledge and

expertise



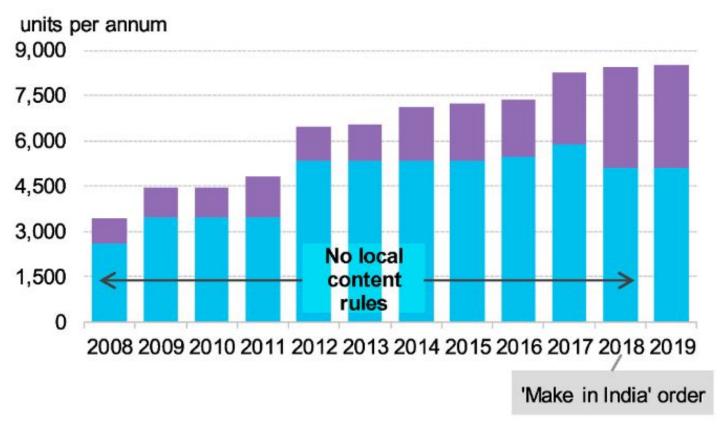
Accumulating

technological

capacity

★**

Policies to 'force' tech transfer


- Joint Ventures: foreign firms must form legal relationships and transfer technology
 - "Negative list": strategically important technologies, Chinese shareholders at 50% or above
 - Solar and wind energy on this list until 2011
 - Electric vehicles phased out 2022
- Local Content Requirements: developers must use a certain percentage of local products
 - Common around the world: EU, North America, MENA region, South America
 - Often tied to funding (FiT eligibility)

The problem with local content requirements

Wind Manufacturing Capacity

Purple = foreign, blue = domestic

Doesn't always work to build industry (see Bazilian et al., 2020, Behuria 2020)

Efficiency issues: can make installations more expensive

Trade conflicts: US – EU – China disputes over LCRs at the WTO

	Technology holders	Technology importers	
Position on IPRs	 Property rights regime incentivizes firms to invest in innovation technological advances for all Countries with stricter IPR protections are more attractive for FDI because it lessens the threat of imitation increasing tech diffusion 	 Risk of patent thickets (needing to acquire different expensive IPRs) blocks technological advances IPRs allow firms to monopolize knowledge that can be life-saving 'Global North' firms mostly owns these IPRs, but have lower climate risks + high historical responsibility 	
Prioritizing	Diffusion: spread (existing) tech as quickly as possible	Transfer: enable clean development pathways	
Proposed solutions	Patent pledgesFlexible and affordable licensing	 Put low-carbon technology in the public domain TRIPs waivers and licensing exceptions 	

Fostering tech transfer: international mechanisms

At the UNFCCC

- Clean Development Mechanism (CDM)
- Conditional Nationally Determined Contributions (NDCs) depend on tech transfer

UN technology mechanism

- Technology Executive Committee: guidance and roadmaps
- Climate Tech Center and Network: technical assistance for developing countries
- Financed by GEC, GCF

NDC explorer: (purple) NDCs conditional on tech transfer

Developing a national policy for deploying and scaling up E-mobility and supporting sustainable infrastructure in Papua New Guinea

Fostering tech transfer: international mechanisms

International organizations and development banks

- Information and training
- Project finance: installation, infrastructure, small-scale electricity access initiatives
- Often development-focused, some local training
- Climate Innovation Centers (CIC): all-around support for SMEs in emerging economics (Ghana, Vietnam)

Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS): Article 66.2

- Developed countries incentivize their firms and institutions to promote tech transfer to LDCs – including low-carbon tech
- Must submit annual reports on their article 66.2 activities
- Critiques: not targeting LDCs, vague or inaccurate tech transfer definitions (e.g. UK funding drug research that could benefit the developing world)

- 'Green industrialization' requires tech diffusion + transfer
- IPRs **are not** the main barrier to tech diffusion
- IPRs **may be** a barrier to tech transfer if costly, create patent thickets etc.
- **Increasing tech diffusion:** increasing attractiveness for investment in RE installations through public/donor mechanisms (de-risking, infrastructure)
- **Increasing tech transfer:** against interests of technology-holders, whose competitive advantages come from innovation
 - **Option 1:** Tech recipients increase requirements
 - Iocal content requirements
 - □ limited to large, attractive markets like China
 - **Option 2:** Developed countries increase requirements on (own) firms:
 - □ obligating own firms to do more for skills-sharing + localization
 - □ keeping IP protections short-term, regulating against patent thickets

Investigating the systemic impacts of the global energy transition (ISIGET) project IASS Potsdam

Silvia Weko <u>silvia.weko@iass-potsdam.de</u> @SilviaWeko

Prof. Dr. Andreas Goldthau Research Group Leader <u>Andreas.goldthau@iass-potsdam.de</u> @goldthau **Research Associate**

SPONSORED BY THE

Federal Ministry of Education and Research

About us

Research Group: The Energy Transition and the Global South

- "Investigating the Systemic Impacts of the Global Energy Transition": funded by French and German governments (2019-2022)
- Interested in challenges facing developing countries, risk of uneven transition

Research streams:

- Trade-climate linkages (Border Carbon Adjustment)
- Energy justice
- COVID-19 impacts
- Attitudes towards climate and energy
- Qualitative case studies: 2050 transition scenarios in Jordan, Malaysia, Kenya and Chile

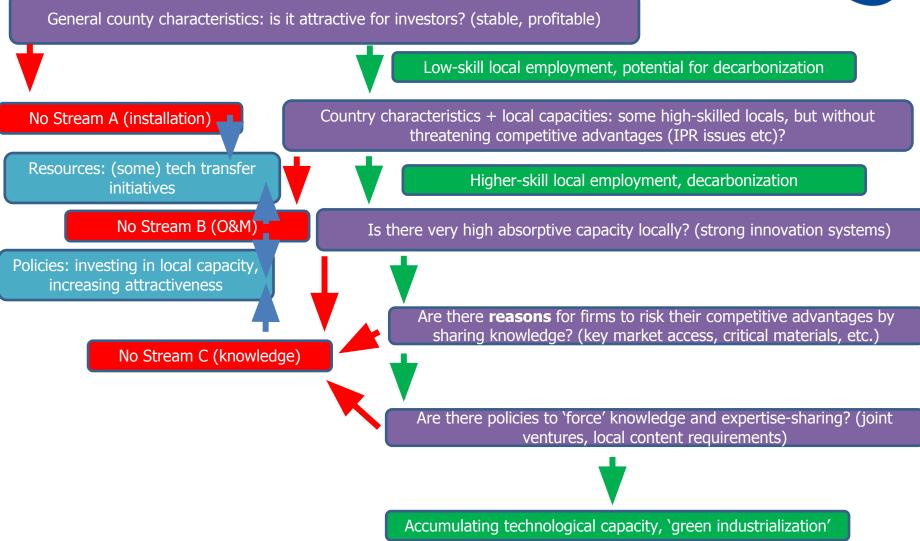
Success stories: tech transfer through FDI and trade

- China: solar and wind industry 'green industrialization'
- Chile, Brazil: wind tech transfer due to demand + pre-existing knowledge base + policy
- India: tech transfer via CDM + demand + policy but 'late' to game
- South Africa: local content requirements unsuccessful

Technology transfer through the Clean Development Mechanism (CDM)

- Follows general trends and existing relationships (China, India, Brazil)
- Around 5% in Africa
- "Technology transfer" listed in projects is not necessarily 'transfer' per se

South-South exchange


- North-South imbalances could make South-South transfer more appropriate?
- Not necessarily: role of China and build-operate-transfer contracts

Intellectual property rights?

Blocking vs. encouraging technology transfer

Tech transfer possibilities

IASS

Institute for Advanced Sustainability Studies e.V.

Summary

Technology importer	Transfer streams	Development and climate potential	National policy options	International community options
Markets perceived as high-risk, low reward: instability, small	Will not arrive through the private sector. Alternatives are (some) tech transfer agents like the CTCN, MDBs	Low: tech transfer initiatives are only a drop in the bucket	Improving attractiveness (e.g. infrastructure investments) Connect to intl resources (UN, IRENA, banks)	Funding and support for higher-risk countries (de-risking, grants to MDBs etc.)
Somewhat attractive markets: smaller but nevertheless profitable	Transfer stream A: installment will increase, but no large structural changes	Medium/low: reducing emissions, but mainly low-skill short-term jobs without transfer	As above	As above Potentially: pressure on tech exporters (like Orsted) for CSR
Attractive markets: tech exporters are willing to make some concessions for access	Transfer stream A+B: installment increases, potential for structural changes	Medium/high: reducing emissions, new jobs in operation, maintenance, installment	Investing in local capacities Requirements on exporters (jobs training, local employment) Connect to intl resources	As above
Very attractive markets: tech exporters will make significant concessions for access	Transfer stream A+B+C	High: reducing emissions, new industry emerges that can eventually push policy	Investing in capacities + local content requirements and joint ventures	Preventing trade conflicts