Bicycle-Rail Trip Analysis and Greenhouse Gas Emissions Reduction Focused Study

Bicycle-Rail Trip Analysis and Greenhouse Gas Emissions Reduction Focused Study

This report and the data contained within was prepared and collected by:

Metro

Cris Liban, Manager of Environmental Compliance and Services Department
Gwynneth L. Doyle, Senior Environmental Specialist
Lynne Goldsmith, Bike Program Manager
Anthony (Tony) Jusay, Transportation Planning Manager
Nathan Baird, Bicycle Planning Intern
David Sotero, Media Relations
Elizabeth McGowan, Senior Marketing and Communications Officer
Sarah Winfrey, Communications Assistant
Anna Mercaldi, Assistant Public Communications Officer

ICF International
Madonna Marcelo, Project Manager
Keith Cooper, Senior Air Quality and Climate Change Analyst

Alta Planning + Design
Lauren Ledbetter, Project Manager
Matt Benjamin, Assistant Project Manager (Former)
Adrian Witte, Senior Planner
Tony Salomone, GIS Specialist

Los Angeles County Bicycle Coalition
Jennifer Klausner, Executive Director
Alexis Lantz, Planning and Policy Director
Dorothy Kieu Le, Planning and Policy Director (Former)

Over 40 volunteers

Table of Contents

Executive Summary i
Purpose i
Methodology i
Findings i
Structure iii
Introduction 1
Purpose 1
U.S. DOT Bicycle and Pedestrian Accommodation Policy 1
The "First Mile-Last Mile" Barriers 2
Metro's Bicycle Policy 2
Methodology 2
Survey Instrument 3
Surveyors 3
Counts 4
Days and Times. 6
Results 7
Overview of Data Collected 7
Peak Hour Use 9
Boarding and Alighting 10
Mode To or From Station 11
Trip Purpose 11
Mode Shift 12
Trips To and From the Station 13
Trips from Origin to Destination 13
Access to a Motor Vehicle 16
Reasons for Choosing the Bike-Rail Option. 17
Demographics 18
Reductions in Vehicle Miles Traveled 19
Bicycle Use Estimates 19
Distance Traveled 21
Distance To or From the Station 21
Distance from Origin and Destination 22
Vehicle Miles Avoided 22
Estimated Greenhouse Gas Emissions Reduction 23
Senate Bill 375 23
Methodology 24
Combined Bicycle-Rail Use Emissions Reductions 24
Vehicle Offsets 25
Findings and Recommendations 25
Findings 25
Recommendations 27
Appendices
Appendix A: Survey InstrumentsAppendix B: Additional Survey Data TablesAppendix C: Additional Count Data Tables and Charts
Appendix D: Schematic Maps
Appendix E: Emissions Calculations
References

List of Tables

Table 1: Stations Selected for Counts and Surveys 5
Table 2: Data Collection Days and Times 6
Table 3: Number of Surveys Collected and Number of Bicyclists Counted 8
Table 4: Bicycle Count Data Summary 9
Table 5: Bicyclist Boardings and Alightings by Line 10
Table 6: Mode Traveled to or From Station 11
Table 7: Purpose of Trip: Start of Trip to Station, by Time Period 12
Table 8: Purpose of Trip: End of Trip from Station, by Time Period 12
Table 9: If you didn't have your bike, how would you get from your origin to the first station? 14
Table 10: If you didn't have your bike, how would you get from the second station to your destination? 14
Table 11: If you didn't have your bike and couldn't take a train, how would you get from your origin to your destination? 15
Table 12: How often do you have access to a motor vehicle? 16
Table 13: Factors Influencing a Person's Decision to Travel by Bike and Rail. 18
Table 14: Estimated Annual Bicycle Trips for the Metro Rail System 20
Table 15: Distance Traveled to or From Station by Mode 21
Table 16: Vehicle Miles Reduced by Combined Bicycling/Rail Trips 22
Table 17: Emissions Reductions in Tons per Year 25

List of Figures

Figure 1: Schematic of Bicycle-Rail Trip 3
Figure 2: Map of Survey Stations 5
Figure 3: Bicycle Peaking Patterns 10
Figure 4: Responses to the Question: If you didn't have your bike, how would you get from your: (A) origin to first station, and (B) second station to destination? 15
Figure 5: Responses to the Question: If you didn't have your bike and couldn't take a train, how would you get from your origin to your destination? 16
Figure 6: Responses to the Question: How often do you have access to a motor vehicle? 16
Figure 7: Gender and Age Breakdown of Survey Respondents 19
Figure 8: Schematic of Distance Calculations for Origin to Destination 21

Executive Summary

Purpose

The Los Angeles County Metropolitan Transportation Authority (Metro) recently began studying the ways in which bicycling, for transportation and in combination with transit, can reduce automobile use and lower greenhouse gas (GHG) emissions. The first of these focused studies concentrated on the Metro Orange Line and parallel bicycle path. This Bicycle Rail Trip Analysis and Greenhouse Gas Emissions Study looks more broadly at bicycle trips to and from Metro Rail. The purpose of this study is to establish the benefits of providing an integrated transportation system where bicyclists are accommodated at train stations and on trains.

Methodology

This focused study relies on bicycle trip data gathered by conducting intercept surveys of bicyclists at a subset of nineteen (19) Metro Rail stations. Counts and surveys were conducted during the weekday morning commute period (6 a.m. to 10 a.m.), the weekday evening commute period (4 p.m. to 8 p.m.) and the weekend midday period (10 a.m. to noon). Bicyclists were asked to report about the journey they were taking at that moment, from the origin to the final destination. Concurrently with the intercept surveys, volunteers recorded the total number of bicyclists entering and exiting each sampled station. Volunteers collected 605 usable surveys and counted 2,305 bicyclists at the 19 sampled stations.

This study uses survey data to calculate bicycle-rail trip distances and associated reductions in vehicle miles traveled (VMT) and GHG emissions. Bicycle count data collected at the sample stations was extrapolated to daily and annual bicycle trips at all stations using Metro Rail ridership data from fiscal year (FY) 2009, and commonly accepted traffic analysis methodology. For those bicycle trips that replaced auto-based trips, trip distances were calculated and used to calculate annual VMT reductions, which were then applied in the Caltrans Emissions Factors model to calculate estimate GHG, criteria pollutant, and mobile-source air toxics (MSAT) emissions reductions. ${ }^{1}$

Findings

- This study indicates that bicyclists are a small but important subset of riders on the Metro Rail system, and bicycle-rail trips offset vehicle miles traveled resulting in quantifiable greenhouse gas emissions. The counts and extrapolated methodology mirrors commonly accepted practices in traffic analysis. Some relevant extrapolated results, based on the data, are as follows: Approximately $1,195,000$ bicyclists would use the Metro Rail system annually. (Which represents 1.3 percent of all annual trips.)

[^0]- Bicycle-rail trips would replace approximately 322,000 motor vehicle trips and reduce 3.96 million vehicle miles traveled each year, offsetting approximately 2,152 metric tons of carbon dioxide equivalents $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ annually. This would be equivalent to taking 422 motor vehicles off the road. ${ }^{2}$
- Bicyclists are universally using the Metro Rail system, with bicyclists reporting starting or ending their rail trip at 71 out of 73 Metro Rail stations surveyed.
- Over a quarter (27 percent) of bicycle-rail trips replace a motor vehicle trip. ${ }^{3}$
- In terms of getting to or from the station, twelve percent of bicycle trips replaced motor vehicle trips. ${ }^{4}$
- On average, 13 bicyclists per hour-one bicyclist every five minutes-enters or exits a Metro train during the weekday morning or weekday evening peak periods. An average of 10 bicyclists per hour - one every six minutes - enters or exits a Metro train during the weekend midday period.

This study provides data on the "bikeshed" of Metro Rail stations, and underscores the importance of increasing a bicyclists' reach by providing for bicycles on transit. On average, bicyclists traveled 2.2 miles to access train travel (these distance are within the typical bicycling catchment area of a train station). Bicyclists taking the bus travel an average of 4.9 miles to access a station.

Additional study results are as follows:
Bicyclists are using the Metro system just as other Metro riders do.

- Respondents generally follow commute trends, with 90 percent of respondents starting their weekday a.m. trip at home and 65 percent of respondents ending their weekday a.m. trip at work. Similarly, 54 percent of respondents started their weekday p.m. trip at work and 66 percent of respondents ended their weekday p.m. trip at home.

Accommodating bicyclists at rail stations and on trains provides mobility benefits.

- Thirteen percent of bicyclists would not make their trip if they couldn't bicycle and take the train.
- Respondents are more transit dependent than the general population, with 11 percent of respondents stating that they "rarely" have access to a motor vehicle and over a third of respondents (37 percent) stating that they "never" have access to a motor vehicle. In Los Angeles County, 9.4% of households do not have access to a motor vehicle. ${ }^{5}$

Allowing bicycles on trains is a major reason why people choose to bicycle, particularly for riders who have access to a motor vehicle.

- Survey respondents overwhelmingly said that being allowed to take their bike on the train influenced their decision to travel by bike and rail. Of the 477 people who responded to the

[^1]question, 65 percent chose "allowed to take bike on train" as a factor that influenced their decision.

- Respondents with access to a motor vehicle are more likely than those without access to a motor vehicle to cite "allowed to take bike on train," "no car parking at station," "bike lockers at station," and "have to pay for car parking at station" as factors that influenced their decision to bicycle.

Women are much less likely to bicycle to a Metro Rail station than men.

- Respondents were mostly male (86 percent) and 75 percent were between the ages of 18 and 39. This percentage of female bicyclists is consistent with the data collected through the 2009 City of Los Angeles Bike Count, which found only 15% of bicyclists counted were female.
- In other California urban areas, women typically represent between 25 and 30 percent of bicyclists rather than the 14 percent found by this study, suggesting that there may be ways that Metro can increase the percentage of women using the bike-rail mode. ${ }^{6}$

Structure

This report consists of the following sections:

Introduction:

Study Results:

Reductions in Vehicle Miles Traveled:

Estimated Greenhouse Gas
Emissions Reduction:

Findings and
Recommendations:

Appendices:

Describes the study purpose and policy background, and discusses the methodology of the surveys and counts in detail

Summarizes the results from the counts and surveys.
Calculates the estimated bicycle usage for the entire Metro Rail system, and the estimated vehicle miles reduced by bicycle-rail trips.

Calculates the amount of carbon dioxide emissions (as well as criteria air pollutant and mobile-source air toxics emissions) offset by bicyclerail trips.

Describes key findings, lessons learned and provides policy recommendations for Metro to pursue in meeting its sustainability goals and providing for bicyclists on transit.

Provides survey instruments, survey data tables, count data tables and a graphic map of trips to and from the Metro Rail stations.

[^2]
Introduction

Purpose

Metro recently began studying the ways in which bicycling, for transportation and in combination with transit, can reduce automobile use and lower GHG emissions. The first of these focused studies concentrated on the Metro Orange Line and parallel bicycle path. This Bicycle Rail Trip Analysis and Greenhouse Gas Emissions Reduction Focused Study concentrated more broadly at bicycle trips to and from Metro Rail lines. The purpose of this study is to determine the extent of the benefits of providing an integrated transportation system where bicyclists are a complementary mode-choice to riding the system. This focused study's methodologies, data, findings and recommendations will serve as another important dataset for future focused studies of multimodal benefits, and provide empirical support for improving bicycle-transit integration with the goal of reducing automobile miles and GHG emissions.

In 2006, Metro adopted the Metro Bicycle Transportation Strategic Plan which emphasizes infrastructure, access and connectivity improvements that will increase the use of bicycles as a transportation mode. This focused study establishes baseline data for the typical number of bicycle-rail trips that are made on Metro transit facilities, estimates the GHG emissions offset by bicycle-rail trips, and provides data that can be used to complement the development of climate change policies and transit industry protocols.

U.S. DOT Bicycle and Pedestrian Accommodation Policy

On March 15, 2010, U.S. Secretary of Transportation Ray LaHood announced a new federal policy ${ }^{7}$ on the development of fully integrated active transportation networks. Transportation agencies, such as Metro are expected to take the lead on this new policy:

The DOT policy is to incorporate safe and convenient walking and bicycling facilities into transportation projects. Every transportation agency, including DOT, has the responsibility to improve conditions and opportunities for walking and bicycling and to integrate walking and bicycling into their transportation systems. Because of the numerous individual and community benefits that walking and bicycling provide - including health, safety, environmental, transportation, and quality of life - transportation agencies are encouraged to go beyond minimum standards to provide safe and convenient facilities for these modes.

In light of this new federal policy statement, preparation of this Metro Rail Focused Mode Shift study comes at an opportune time. The study's purpose, to establish the sustainability benefits of providing an integrated transportation system where bicyclists are accommodated at train stations and on trains, can serve as the data to support this new policy. By quantifying these benefits, Metro should be able to follow USDOT's recommended actions with hard data to support this policy shift:

The DOT encourages States, local governments, professional associations, community organizations, public transportation agencies, and other government agencies, to adopt similar policy statements on bicycle and pedestrian accommodation as an indication of their commitment

[^3]to accommodating bicyclists and pedestrians as an integral element of the transportation system. In support of this commitment, transportation agencies and local communities should go beyond minimum design standards and requirements to create safe, attractive, sustainable, accessible, and convenient bicycling and walking networks.

The "First Mile-Last Mile" Barriers

Bicycling offers one solution to overcoming the "first mile-last mile" barriers for people who would potentially take transit but choose not to because their starting point or final destination is not conveniently accessible to the transit stop due to distance, street patterns, or safety concerns. Metro recognizes the importance of bridging this last mile to attract drivers to transit, and the role that bicycling plays. Metro allows folding bicycles on trains at all times and is studying the feasibility of a subsidized folding bicycle program. Regionally, the Southern California Association of Governments (SCAG) and the City of Los Angeles recommended two bicycle-related strategies to address the "first mile-last mile" barrier in their 2009 report Maximizing Mobility in Los Angeles: increasing folding bicycle use and establishing bicycle sharing programs. ${ }^{8}$ The data, findings and recommendations from that study can be used to guide, support and evaluate bicycle-related "first mile-last mile" programs.

Metro's Bicycle Policy

Metro's Bicycle Policy has an effect on how bicyclists are using the system. Bicycles are allowed on bus bike racks with no time restrictions. At the time the study was conducted, bicycles were restricted from the trains during the peak weekday commuting period, and through certain localities. However on April 28, 2011 that policy has been removed. However, if the arriving train is crowded, or the bus rack is full, then the bicyclist must wait for a train with available room.

Bicycle restrictions were: weekdays 6:30 a.m. - 8:30 a.m. and 4:30 p.m. - 6:30 p.m. Trains affected were all of the Blue Line, all of the Gold Line, Green Line from Norwalk station to Redondo Beach station, Red Line from Union Station to Wilshire/Vermont station (both directions).

Methodology

This focused study relies on bicycle trip data gathered by conducting intercept surveys of bicyclists at a subset of nineteen (19) Metro Rail stations to measure reductions in VMT and GHG emissions related to bicycle-rail trips. Count data, in conjunction with Metro Rail ridership data from FY 2009, are used to extrapolate VMT and GHG emissions reductions to annual numbers as is typically done in transportation analysis.

The sections below describe the methodology used for the surveys and the counts.

[^4]
Survey Instrument

For each bicycle-train trip, surveyors collected: the origin of the trip (A), the station where the bicyclist boarded the train (B), the station where the bicyclist exited the train (C), and the final destination of the bicyclist (D). See Figure 1 for an illustration. The surveyor also collected the mode (e.g., walk, bike, bus, etc.) that the bicyclist took to get from the origin to the train station (A-B) and from the train station to the destination (C-D). Finally, bicyclists were asked how they would travel between their origin and destination (A-D) if they didn't have their bike and couldn't take the train.

Appendix A includes the survey instruments. The same information was collected of boarding bicyclists and alighting bicyclists. Note that to collect comparable data from boarding and alighting bicyclists, the survey instrument for the boarding bicyclists had to be worded slightly differently and have a different question order than the survey instrument for the alighting bicyclists.

To improve the chances of collecting more accurate information, the surveyors recorded the bicyclists' answers, rather than having bicyclists fill out the forms themselves.

Figure 1: Schematic of Bicycle-Rail Trip Spanish-speaking surveyors were assigned to stations where high numbers of Spanish-speaking riders were expected, and all surveyors were given Spanish surveys in addition to English surveys.

Surveyors

The Los Angeles County Bicycle Coalition (LACBC) recruited volunteer surveyors. They had previous experience in spearheading the 2009 City of Los Angeles Bicycle and Pedestrian Count project, and have the ability to mobilize a large amount of volunteers to conduct surveys and pedestrian counts simultaneously at several locations. LACBC used their weekly newsletter, which was sent out to their membership database, as well as to approximately 6,000 Los Angeles area residents/cyclists, to recruit volunteer surveyors for the project. In addition, LACBC posted this request on their Facebook page and sent out special volunteer opportunity emails to their members who have previously volunteered.

Volunteers were allowed to choose the locations and times with which they volunteered based on where they lived and their schedule. However, in some cases, volunteers were requested to conduct their surveys in areas where there were gaps in the planned schedule. LACBC conducted a volunteer training session, which included Metro's rail safety training course. During the training session, LACBC conducted the following:

- Described the purpose of the study;
- Reviewed the count and survey forms;
- Demonstrated a survey being taken in front of the volunteers;
- Led the volunteers to role play in taking and administering the survey;
- Provided instructions on the submittal of completed count and survey forms; and
- Provided contact information for LACBC volunteer coordinators.

Counts

During the same time periods that surveys were collected, the number of bicyclists exiting and entering the stations and the number of bicycles parked at the station were counted. Entering and exiting bicyclists were counted in fifteen-minute intervals, and parked bicycles were counted at the beginning and end of the count time.

Station Selection

Bicyclists were intercepted and counted at twenty Metro Rail stations (see Figure 1), representing 29\% of all rail stations on the Metro Red, Purple, Gold, Blue, and Green Lines. Bus Rapid Transit stations (Metro Orange and Silver Lines) were not included in this analysis. When selecting the stations, the following guidelines were used: ${ }^{9}$

1. All end-of-line stations were selected to capture people who might bicycle from outside Metro's service area to an end-of-line station.
2. Stations with generally higher ridership, and therefore perceived higher bicycle usage were prioritized.
3. All vehicle and bicycle parking facilities were represented (e.g. bicycle lockers, bicycle racks, pay parking, free parking, no parking).
4. Some mid-line stations were selected for geographical distribution.

Within these parameters, stations were selected randomly.

Table 1 lists the selected stations, the motor vehicle and bicycle parking status, and the location of the station within the transit network (i.e., whether a station is end of line or not).

[^5]

Note: Wis Wilshire/ Vermont is counted as two stations since it is a major transfer hub and the Red and Purple line platforms are at separate locations.

Figure 2: Map of Survey Stations

Table 1: Stations Selected for Counts and Surveys

	Line(s)	Free Parking	Racks Only	Racks and Lockers	End of Line	Transfer Station	Notes
North Hollywood	Red	x		x	x		High-use
Vermont/Santa Monica	Red		x			High-use, Mid-line	
Wilshire/Vermont ${ }^{1}$	Purple/Red	x		x		x	Mid-line
Wilshire/Western	Purple			x	x		
Westlake/MacArthur Park	Purple/Red		x			High-use, Mid-line	
Sierra Madre Villa	Gold 3	x		x	x		

Station	Line(s)	Free Parking	Racks Only	Racks and Lockers	End of Line	Transfer Station	Notes
Highland Park	Gold ${ }^{3}$			x			High-use, Mid-line
Mariachi Plaza	Gold ${ }^{3}$			x			Mid-line
Atlantic	Gold ${ }^{3}$	x		x	x		
7th St/Metro Center ${ }^{2}$	Blue/Red/ Purple					x	High-use
Grand	Blue						Mid-line
Florence	Blue	x	X				Mid-line
Imperial/Wilmington ${ }^{2}$	Blue	x		x		x	High-use, Mid-line
Del Amo	Blue	x		x			Mid-line
1st Street ${ }^{1}$	Blue	x			x		
Norwalk	Green	x		x	x		High-use
Crenshaw	Green	x		x			Mid-line
Aviation/LAX	Green	x		x			High-use
Redondo Beach	Green	x		x	X		

1. These stations offer free parking but provide patrons the option to pay for a reserved parking spot.
2. Only bicyclists on the Metro Blue Line were intercepted.
3. Includes both the Pasadena and Eastside Extension Lines.

Days and Times

Surveys and counts were conducted over the three-week period spanning from Tuesday, May 11, 2010 to Saturday, May 29, 2010. To avoid skewing results, data were not collected on Bike to Work Day (Thursday, May 14, 2010). Data were collected at each station three times: during both weekday morning (6:00 a.m. to 10:00 a.m.) and evening commute hours (4:00 p.m. to 8:00 p.m.) and once on the weekend (10:00 a.m. to noon). Weekday count and survey windows include times during which bicyclists are allowed to take their bike on the train, in addition to the times when bicyclists are restricted from taking their bike on the train. There are no restrictions during the weekend.

Weather was fair on all the days counts were collected.
Table 2 summarizes the data collection days and times, and lists the times that bicycles are restricted on trains.

Table 2: Data Collection Days and Times

Days	Times	Bicycle Restrictions
Weekday Morning (Tues, Wed, or Thurs)	6 a.m. to 10 a.m.	Bikes restricted on trains from 6:30 a.m. to 8:30 a.m.
Weekday Evening (Tues, Wed, or Thurs)	4 p.m. to 8 p.m.	Bikes restricted on trains from 4:30 p.m. to 6:30 p.m.
Weekend Saturday or Sunday	No restrictions in place.	

Results

Overview of Data Collected

Surveyors collected 710 surveys at 19 stations. Fifteen percent of the collected surveys were Spanish. Over two thousand $(2,305)$ bicyclists were counted entering or exiting the selected stations. Not every counted cyclist was surveyed. Survey rates were as low as 3 percent, and as high as 100 percent between the 19 stations. Stations with lower bicycle counts had better sample rates (see Table 3).

Since bicyclists were intercepted in the middle of their journey, there were occasions when not all information was collected before a bicyclist needed to catch a train or ride away from the station. Of the 710 survey responses received, 605 or 85 percent had at least one origin or destination address. The analysis in this report only uses the 605 surveys with origin or destination data. Of these 605 surveys, 106 had origin addresses only, 65 had destination addresses only, and 434 surveys had addresses for both origin and destination.

As shown in Table 4, a total of 2,305 bicyclists were counted entering or exiting the twenty sampled stations, with 909 bicyclists counted during the weekday morning period, 1,053 bicyclists counted during the weekday evening period, and 343 bicyclists counted during the weekend midday period.

Table 4 shows the average number of bicyclists counted per hour at each station. On average, 12.9 bicyclists were counted every hour at the 19 stations during the weekday peak hours. This is equivalent to one bicyclist every five minutes. During the weekend peak, an average of 10.1 bicyclists were counted every hour at 17 of the 19 stations - approximately one every six minutes. ${ }^{10}$ Transfer stations Imperial/Wilmington, $7^{\text {th }} \mathrm{St} /$ Metro Center, and Wilshire/Vermont had the highest bicycle counts of any station, with weekday averages of 35.9, 32.9 and 24.0 bicyclists counted per hour, respectively. Despite having excellent bicycle access via the Metro Orange Line bicycle path, North Hollywood saw lower than average hourly bicycle counts. Though Mariachi Plaza, on the Metro Gold Line, saw the lowest weekday hourly bicycle counts of all the stations, surveyors observed many bicyclists using the bus adjacent to the station, rather than taking the train, underscoring the fact that these counts may not be indicative of bicycle use on the Metro Bus system.

[^6]
Table 3: Number of Surveys Collected and Number of Bicyclists Counted

		Number of Surveys Collected			Counts			Percent of Bicyclists Surveyed*		
Station	Line(s)	Weekday Morning	Weekday Evening	Weekend Midday	Weekday Morning	Weekday Evening	Weekend Midday	Weekday Morning	Weekday Evening	Weekend Midday
1st Street	Blue	4	6	no data	9	15	3	44\%	40\%	n/a
7th St/Metro Center	Blue	4	15	8	131	132	52	3\%	11\%	15\%
Atlantic	Gold	11	8	7	11	26	12	100\%	31\%	58\%
Aviation/LAX	Green	6	8	4	42	43	11	14\%	19\%	36\%
Crenshaw	Green	12	17	7	47	64	21	26\%	27\%	33\%
Del Amo	Blue	7	16	3	46	53	13	15\%	30\%	23\%
Florence	Blue	29	16	10	63	88	no data	46\%	18\%	n/a
Grand	Blue	22	22	7	42	36	15	52\%	61\%	47\%
Highland Park	Gold	18	15	no data	35	35	22	51\%	43\%	n/a
Imperial/Wilmington	Blue	no data	no data	13	102	185	50	n/a	n/a	26\%
Mariachi Plaza	Gold	3	1	no data	3	4	5	100\%	25\%	n/a
North Hollywood	Red	34	15	3	44	26	23	77\%	58\%	13\%
Norwalk	Green	18	17	7	69	64	15	26\%	27\%	47\%
Redondo Beach	Green	9	4	6	20	21	12	45\%	19\%	50\%
Sierra Madre Villa	Gold	6	9	12	31	35	13	19\%	26\%	92\%
Vermont/Santa Monica	Red	12	16	2	30	35	38	40\%	46\%	5\%
Westlake/MacArthur Park	Red	15	13	no data	50	51	16	30\%	25\%	n/a
Wilshire/Vermont	Red/Purple	17	38	8	98	94	22	17\%	40\%	36\%
Wilshire/Western	Purple	13	24	8	36	46	no data	36\%	52\%	n/a
Total		240	260	105	909	1053	343			

*Represents the number of bicycles surveyed compared to the number of bicycles counted entering/exiting the station.
"No data" refers to locations for which there is no data available, typically because the count and survey forms were not turned in despite repeated follow-up.

Table 4: Bicycle Count Data Summary

Station	Line	Weekday		Weekend		Notes*
		Total Count	Hourly Average	Total Count	Hourly Average	
Imperial/Wilmington	Blue	287	35.9	50	25.0	TS, ML, HU
7th St/Metro Center	Blue	263	32.9	52	26.0	TS, HU
Wilshire/Vermont*	Red/Purple	192	24.0	22	11.0	TS, ML
Florence	Blue	151	18.9	no data	n/a	ML
Norwalk	Green	133	16.6	15	7.5	EOL, HU
Crenshaw	Green	111	13.9	21	10.5	ML
Westlake/MacArthur Park	Purple/Red	101	12.6	16	8.0	HU, ML
Del Amo	Blue	99	12.4	13	6.5	ML
Aviation/LAX	Green	85	10.6	11	5.5	HU
Wilshire/Western	Purple	82	10.3	no data	n/a	EOL
Grand	Blue	78	9.8	15	7.5	ML
North Hollywood	Red	70	8.8	23	11.5	EOL, HU
Highland Park	Gold	70	8.8	22	11.0	ML, HU
Sierra Madre Villa	Gold	66	8.3	13	6.5	EOL
Vermont/Santa Monica	Red	65	8.1	38	19.0	HU, ML
Redondo Beach	Green	41	5.1	12	6.0	EOL
Atlantic	Gold	37	4.6	12	6.0	EOL
1st Street	Blue	24	3.0	3	1.5	EOL
Mariachi Plaza	Gold	7	0.9	5	2.5	ML
Total		1,962	12.9	343	10.1	
By Line						
Metro Blue Line		902	112.8	133	66.5	
Metro Red/Purple Line		510	63.8	99	49.5	
Metro Green Line		370	46.3	59	29.5	
Metro Gold Line		180	22.5	52	26.0	

Peak Hour Use

Bicyclists peaking patterns roughly follow those of all Metro riders, but do show distinct differences. As shown in Figure 3, bicyclist use peaks before and after the weekday bicycle use restrictions, but shows the highest peak during the peak hour restriction. See Appendix C for a chart comparing overall Metro Rail peaking to bicyclist peaking.

Figure 3: Bicycle Peaking Patterns

Boarding and Alighting

Bicyclists were asked to identify the station where they began their bicycle-rail trip, and the station at which they would end their trip. As shown in Table 5, bicyclists are universally using the Metro Rail system, with bicyclists reporting starting or ending their rail trip at 71 out of 73 Metro Rail stations (97 percent). Surveyors observed bicyclists using the bus parallel to the Gold Line, rather than the Gold Line. Appendix B lists the boarding and alighting stations, sorted by line.

Table 5: Bicyclist Boardings and Alightings by Line

	Number of Stations on Line	Number of Stations Where Bicyclists Boarded or Alighted	Percent of Stations Represented
Metro Red Line / Purple Line	16	16	100%
Metro Blue Line	22	22	100%
Metro Green Line	14	14	100%
Metro Gold Line	21	19	90%
Total	$\mathbf{7 3}$	$\mathbf{7 1}$	$\mathbf{9 7 \%}$

Mode To or From Station

Bicyclists were asked to identify which modes they took to or from a station by choosing from a list of options. All of the 605 respondents answered the question, resulting in responses for 1,210 trips, as shown in Table 6. Not surprisingly, bicycling was the primary mode, with bicycle-only trips representing 81 percent of all trips (979 trips). Bicycle-transit trips were the next highest mode, representing 8% of all trips (92 trips).

Table 6: Mode Traveled to or From Station

Mode	Total Trips	Percentage
Biked	979	81.1%
Walked	26	2.1%
Drove alone	6	0.5%
Dropped off	6	0.5%
Carpooled	3	0.2%
Bus	54	4.5%
Linked Trips	130	10.7%
Biked \& Bus	42	3.5%
Biked \& Train/Subway/Light Rail	40	3.3%
Train/Subway/Light Rail	28	2.3%
Biked \& Train/Subway/Light Rail \& Bus	10	0.8%
Biked \& Walked	6	0.5%
Train/Subway/Light Rail \& Bus	3	0.2%
Biked \& Walked \& Bus	1	0.1%
No mode stated	6	0.6%
Total	$\mathbf{1 , 2 1 0}$	$\mathbf{1 0 0 \%}$

Trip Purpose

Respondents were asked to report generally where they were coming from and going to-their trip purpose. Choices included the following:

- Work;
- Store, restaurant, movies, or other shopping and entertainment;
- Family or friend's house;
- Home;
- Doctor, dentist, or other personal business; or
- Other (write-in field).

Many of the write-in answers were school-related, or could be categorized as one of the other trip purposes. This is reflected in Table 7 and Table 8.

The trip purpose varies by time of day and indicates that many of the respondents are using Metro Rail for work-related commuting. Respondents generally follow commuter trends, with 90 percent of respondents starting their weekday morning trip at home and 65 percent of respondents ending their weekday morning trip at work. Similarly, 54 percent of respondents started their weekday evening trip at work and 66 percent of respondents ended their weekday evening trip at home. During the weekend, these trends are less pronounced.

Table 7: Purpose of Trip: Start of Trip to Station, by Time Period

Start of trip	Weekday Morning	Weekday Evening	Weekend Midday
Doctor, dentist, or other personal business	0%	3%	0%
Family or friend's house	1%	6%	9%
Home	$\mathbf{9 0 \%}$	22%	$\mathbf{7 3 \%}$
Store, restaurant, movies, or other shopping and entertainment	1%	5%	6%
Work	5%	54%	8%
School	1%	7%	1%
Other	0%	2%	4%
Total	100%	100%	100%

Out of 596 respondents who answered question.
Totals may not add up to 100% due to rounding.

Table 8: Purpose of Trip: End of Trip from Station, by Time Period

End of trip	Weekday Morning	Weekday Evening	Weekend Midday
Doctor, dentist, or other personal business	5%	1%	3%
Family or friend's house	4%	10%	20%
Home	8%	$\mathbf{6 6 \%}$	20%
Other	5%	4%	14%
School	11%	4%	0%
Store, restaurant, movies, or other shopping and entertainment	2%	5%	$\mathbf{2 4 \%}$
Work	$\mathbf{6 5 \%}$	10%	20%
Total	100%	100%	100%

Out of 601 respondents who answered question.

Mode Shift

"Travel mode" refers to the way in which people travel-bicycling, walking, driving alone, carpooling, taking the bus, and taking a train are all modes of travel. "Mode shift" refers to when people shift from one travel mode to another. This study is primarily concerned with whether survey respondents would
shift from biking to driving, carpooling or getting dropped off if biking wasn't an option. Integrating bicycle and pedestrian facilities with transit facilities provides a higher multimodal level of service than transit or bicycle/pedestrian facilities alone, allowing travelers to switch more easily between modes and use more than one non-auto mode per trip. The ability to mode-shift is a part of the overall philosophy of sustainable and livable community strategies. To understand this, respondents were asked how they would make their trip if they couldn't use their bicycle. This question was asked three ways:

1. If you didn't have your bike, how would you get from your origin to the first station?
2. If you didn't have your bike, how would you get from the second station to your destination?
3. If you didn't have your bike and couldn't take a train, how would you get from your origin to your destination?

Respondents were asked to choose from a list of answers, and could choose more than one answer. Responses are summarized in Table 9, Table 10 and Table 11, below.

Trips To and From the Station

The answers to the first two questions were very similar. As shown in Figure 4, if respondents couldn't bicycle to or from the train station, between 42 and 43 percent would switch to walking and between 35 to 36 percent would switch to taking the bus. Only 8 percent of respondents would switch to driving alone, carpooling or getting dropped off. Three to 4 percent said they would not make the trip if they couldn't bicycle.

Trips from Origin to Destination

Responses to the third question were dramatically different, and showed more mode shift toward private motor vehicles and an increased percentage of respondents who would not make the trip at all. As shown in Figure 5, when respondents were asked about how they would get from their origin to their destination if they couldn't ride their bike and take the train, 18 percent would switch to walking and 40 percent would switch to taking the bus. Over a quarter, 27 percent, would shift to private motor vehicles (18 percent drive alone, 5 percent carpool and 4 percent dropped off). Thirteen percent would not make the trip if they couldn't bicycle and take the train, indicating that the bike-rail mode provides significant mobility benefits.

Table 9: If you didn't have your bike, how would you get from your origin to the first station?

Mode to Which Respondents Would Switch	Number	Percent
Walk	303	42%
Bus	258	36%
Drive Alone	55	8%
Train/Subway/Light Rail	32	4%
Carpool	19	3%
Drop off	18	2%
Other	13	2%
Would not make the trip	24	3%
Total	$\mathbf{7 1 9}$	

Respondents could choose more than one answer.

Table 10: If you didn't have your bike, how would you get from the second station to your destination?

Mode to Which Respondents Would Switch		
Number	Percent	
Balk	315	44%
Drive Alone	254	35%
Train/Subway/Light Rail	57	8%
Drop off	35	5%
Carpool	15	2%
Would not make the trip	13	2%
Total	28	4%

Respondents could choose more than one answer.

Table 11: If you didn't have your bike and couldn't take a train, how would you get from your origin to your destination?

Mode to Which Respondents Would Switch	Number	Percent
Bus	305	40%
Drive Alone	137	18%
Walk	135	18%
Carpool	37	5%
Drop off	33	4%
Other	14	2%
Train/Subway/Light Rail	10	1%
Would not make the trip	97	13%
Total	$\mathbf{7 6 8}$	

Respondents could choose more than one answer.

Figure 4: Responses to the Question: If you didn't have your bike, how would you get from your: (A) origin to first station, and (B) second station to destination

Figure 5: Responses to the Question: If you didn't have your bike and couldn't take a train, how would you get from your origin to your destination?

Access to a Motor Vehicle

Respondents were asked if they had access to a motor vehicle. Respondents are very transit-dependent, with over a third of respondents (37 percent) stating that they "never" have access to a motor vehicle and 11 percent of respondents stating that they "rarely" have access to a motor vehicle, as shown in Table 12 and in Figure 6. Twenty-three (23) percent of respondents "sometimes" have access to a motor vehicle and 30 percent "always" have access to a motor vehicle.

Table 12: How often do you have access to a motor vehicle?

Level of Access	Number	Percent
Always	161	30%
Sometimes	121	22%
Rarely	60	11%
Never	199	37%
Total	$\mathbf{5 4 1}$	$\mathbf{1 0 0 \%}$

Figure 6: Responses to the Question: How often do you have access to a motor vehicle?

Reasons for Choosing the Bike-Rail Option

Respondents were asked the question, "Of the following choices, which ones influenced your decision to ride your bike to the train today, rather than walk, drive or take the bus?" and were provided a list of choices from which to choose:

- Allowed to take bike on train (65% of respondents)
- No car parking at station (4% of respondents)
- Good bike facilities on the way to the station (4% of respondents)
- Bike racks at the station (3\% of respondents)
- Bike lockers at the station (3% of respondents)
- Have to pay for car parking at the station (3\% of respondents)
- None of the above (32% of respondents)

Table 13 presents the percentages of survey respondents who identified which factor(s) influenced their decision to travel by bike and rail. Survey respondents overwhelmingly said that being allowed to take their bike on the train influenced their decision to travel by bike and rail. Of the 477 people who responded to the question, 65 percent chose "allowed to take bike on train" as a factor that influenced their decision. Thirty-two percent of respondents indicated that none of the given reasons influenced their decision to use their bike and rail, suggesting that there may be other factors besides bike access on trains, bike parking, motor vehicle parking, and bicycle facilities that influence a person's decision to travel by bike and rail.

When looking at responses broken down by access to a motor vehicle, a slightly different picture emerges. Respondents with access to a motor vehicle are more likely to cite "allowed to take bike on train," "no car parking at station," "bike lockers at station," and "have to pay for car parking at station" as factors that influenced their decision to bicycle. Respondents without access to a motor vehicle are slightly more likely to cite "good bicycle facilities on the way to station" as a factor that influenced their decision to bicycle, and are much more likely to state that none of the given choices influenced their decision to bicycle. Likely, not having access to a car was a major reason why these respondents chose to bicycle, though this was not included in the list of choices.

It should be noted that at many stations, bicyclists were intercepted on the station platform, rather than outside the station. It is likely that bicyclists who were parking their bicycle outside the station were under-represented in the sample. These bicyclists may rate bicycle parking, motor vehicle parking, or bike facilities differently, compared to the bicyclists that we intercepted on the platform.

Table 13: Factors Influencing a Person's Decision to Travel by Bike and Rail

	Percent for those who have access to a car	Percent for those who have access to a car "never" or "rarely"		
	Number of Responses	Percent of Total	"sometimes"	
Allowed to take bike on train	311	65%	72%	57%
No car parking at the station	19	4%	5%	2%
Good bike facilities on the way to the station	17	4%	3%	4%
Bike racks at the station	15	3%	3%	3%
Bike lockers at the station	12	3%	3%	1%
Have to pay for car parking at the station	12	3%	4%	0%
None of the above	151	32%	23%	42%
Total respondents who answered question	477		260	214

Respondents could select more than one answer, so percentages do not add up to 100%.
Breakdown by access to car does not include 3 respondents who did not answer the access to car question.

Demographics

Respondents were overwhelmingly male. Of the 566 bicyclists who indicated their gender, 86 percent were male, and 14 percent were female. This is consistent with the data collected through the 2009 City of Los Angeles Bike Count, which found only 15% of bicyclists counted were female. However, women typically represent between 25 and 30 percent of bicyclists rather than the 14 percent found by this study, suggesting that there may be ways that Metro can increase the percentage of women using the bike-rail mode. ${ }^{11}$

Of the 566 bicyclists who stated their age, nearly half (48%) were between the ages of 18 to 29 , and over a quarter (27%) were between the ages of 30 and 39 . This too, is typical of other bicycle intercept surveys, which show that bicyclists tend to be younger than the general population.

Figure 7 illustrates the gender and age breakdowns for the intercepted bicyclists.

[^7]

Figure 7: Gender and Age Breakdown of Survey Respondents

Reductions in Vehicle Miles Traveled

To estimate the amount of VMT and GHG emissions a bicycle-train trip offsets, one must answer at least two questions. First, how far is the total bicycle-train trip, from the origin to the destination? Second, did this trip replace a motor vehicle trip? This section calculates vehicle miles traveled for those bicyclists who indicated that they would switch to driving, carpooling or getting dropped off.

This section begins with an estimate of the total system-wide bicycle use, which is extrapolated from the bicycle counts collected during the study using Metro Rail ridership data for FY 2009. ${ }^{12}$ It continues with description of how distances traveled by bicyclists were calculated based on the origin and destination locations reported by the intercepted bicyclists, and concludes with an estimate of the annual motorvehicle miles replaced by bicycle-rail trips.

Bicycle Use Estimates

Mariachi Plaza and Atlantic Stations were not in operation in FY 2009, and, therefore, are not used in the calculations. Accordingly, only 17 of the 19 stations were sampled for the weekday and only 15 of the 19 stations for the weekend. ${ }^{13}$ Table 14 estimates the total annual bicycle ridership on Metro Rail by extrapolating the bicycle trips recorded during the count periods at the sample stations to represent daily, weekly and annual bicycle trip numbers. These were then expanded to represent bicycle trips at all stations. The extrapolations use ratios based on Metro Rail ridership information for FY 2009.

Table 14 first estimates the daily weekday trips projected from weekday morning counts (Item A) and projected from weekday evening counts (Item B). It then averages these two counts to come up with the daily weekday bicycle trips (Item C). Annual weekday trips (Item D) are then calculated by applying the ratio of weekday trips/annual weekday trips. The same is conducted for weekend trips with daily weekend trips projected from weekend counts (Item E). These are then extrapolated using the ratio of

[^8]weekend trips/annual weekend trips to get annual weekend trips (Item F). Annual bicycle trips (Item G) are then calculated by summing the annual weekday and weekend trips.

Appendix C includes ridership calculations for the 17 stations which were in operation in FY2009.
Annually, there are approximately 1,194,200 bicycle trips taken on the Metro Rail system, representing 1.3 percent of all annual trips. ${ }^{14}$

Table 14: Estimated Annual Bicycle Trips for the Metro Rail System

	Count Stations*	All Stations**	Calculation Notes***
A. Daily Weekday Bicycle Trips Projected from 6 a.m. to 10 a.m. counts	1,693	3,937	Weekday boardings and alightings counted between 6 a.m.-10 a.m. (see Table 3) divided by 2 to get trips, divided by .268 (i.e. the ratio of 6 a.m.10 a.m. weekday ridership to 24 -hour weekday ridership)
B. Daily Weekday Bicycle Trips Projected from 4 p.m. to 8 p.m. counts	1,651	3,840	Weekday boardings and alightings counted between 4 p.m. -8 p.m. (see Table 3) divided by 2 to get trips, divided by .319 (i.e. the ratio of 4 p.m.8 p.m. weekday ridership to 24 -hour weekday ridership)
C. Daily Weekday Bicycle Trips	1,672	3,888	Average of A and B

D. Annual Weekday Bicycle Trips	426,310	991,552	Daily weekday trips (C) divided by .004 (i.e. the ratio of daily weekday transit trips to annual weekday transit trips)
E. Daily Weekend Bicycle 1,468 3,698	Weekend boardings and alightings counted Trips		between 10 a.m.-noon (see Table 3) divided by 2 to get trips, divided by .117 (i.e. the ratio of 10 counts from 10 a.m. to noon
	a.m.-noon weekend ridership to 24-hour weekend ridership)		

F. Annual Weekend Bicycle	80,418	202,613	Daily weekend trips (E) divided by . 018 (i.e. the ratio of daily weekend transit trips to annual Trips
weekend transit trips)			
E. Annual Bicycle Trips (including weekday, weekend, and holidays)	506,729	$1,194,165$	Annual weekday bicycle trips (D) plus annual weekend bicycle trips (F)

Notes (Table 14):
*Weekday counts include data at 17 stations. Weekend counts include data at 15 stations.
**All station estimates are based on the total ridership ratio between the 17 weekday count stations (15 weekend count stations) and all stations. These ratios are calculated for the weekday as 0.421 (i.e. 62,062,071 riders per year at the 17 count stations compared to 147,586,879 riders per year at all stations) and for the weekend as 0.378 (i.e. $14,464,796$ riders per year at the 15 count stations compared to $38,250,173$ riders per year at all stations). A factor is also applied to account for the fact that two stations were not in operation in FY2009: Mariachi Plaza and Atlantic, both on the Metro Gold Line. A factor of 2.2% was applied on the weekday and 4.95% on the weekend, representing the percentage of riders counted at these stations (see Table 3).
***Ratios are based on Metro Rail ridership information for FY 2009.

[^9]
Distance Traveled

Using the nearest cross-streets to the origins and destinations as reported by bicyclists, the authors calculated the shortest distance between points using Geographic Information Software (GIS) and a map of surface streets for Los Angeles County. Distance was calculated for each trip to or from a station (A to B and C to D), as well as for the hypothetical trip between origin and destination (A to D) (see Figure 8).

Figure 8: Schematic of Distance Calculations for Origin to Destination

The process of mapping origin and destination points is sensitive to the accuracy of the street names, and for this reason, only a subset of origin and destination points could be mapped. Within the time-frame of the study, unmapped cross-streets were reviewed and manually located on the map.

Distance To or From the Station

Of the 605 surveys with address information, 106 had origin addresses only, 65 had destination addresses only, and 434 surveys had addresses for both origin and destination. This works out to 1,039 trips to or from a station, of which distance could be calculated for 1000 trips, or 96 percent. The remaining 4 percent contained addresses that could not be located on the map.

Table 15 summarizes the distance traveled to or from station by mode. On average, bicyclists traveled 2.2 miles to access a station. Respondents who bicycled and took the bus traveled an average of 4.9 miles to access a station. Respondents using motor vehicles traveled the farthest to access a station. Table 15 summarizes the distance traveled to or from a station by mode.

Table 15: Distance Traveled to or From Station by Mode

Mode To or From Station	Average Miles per Trip	Max Miles Reported	Total Trips
Biked	2.2	50.5	829
Walked	2.4	30.2	18
Drove alone	7.9	9.7	5
Dropped off	4.2	6.5	3
Carpooled	5.8	9.9	3

Mode To or From Station	Average Miles per Trip	Max Miles Reported	Total Trips
Bus	8.6	106.0	40
Metrolink	6.5	6.5	1
Linked Trips (Average)	4.1	12.7	97
Biked \& Bus	4.9	15.7	33
Biked \& Train/Subway/Light Rail	2.2	19.2	28
Train/Subway/Light Rail	5.1	21.5	19
Biked \&Train/Subway/Light Rail \& Bus	2.6	5.0	7
Biked \& Walked	1.5	3.8	6
Train/Subway/Light Rail \& Bus	11.4	22.9	3
Biked \& Walked \& Bus	0.7	0.7	1
No mode stated	3.5	12.0	4

Distance from Origin and Destination

Of the 434 surveys that included both origin and destination addresses, distance was only calculated for the 114 respondents who indicated that they would switch to driving, carpooling or getting dropped off if they couldn't bicycle and take the train. Distance was calculated by using GIS to map the shortest route between the origin address and the destination address along surface streets. Average distance of an origin-destination trip along surface streets is 12.27 miles.

Vehicle Miles Avoided

Vehicle miles avoided are calculated for the length of the total bicycle-rail trip from origin to destination (A to D) (see Figure 8).

Respondents were asked how they would have made the entire trip, from their origin to their destination (A to D), if they couldn't take their bike and the rail. Twenty-seven percent indicated that they would shift from their bicycle-rail trip to driving alone, carpooling or being dropped off. Applying this percentage to the estimated total bicycle-rail trips translates to the reduction of 322,425 motor vehicle trips each year. The average distance of a shifted bicycle-rail trip is 12.27 miles. Applying this to the reduced motor vehicle trips yields the reduction of just under 4 million motor-vehicle miles each year, as presented in Table 16.

Table 16: Vehicle Miles Reduced by Combined Bicycling/Rail Trips

1	Total annual estimated system-wide bicycle-rail trips (Table 14)	$1,194,165$
	Percent of trips that would be replaced by motor vehicle trip (Table	
2	11)	27%
	Total number of trips that would be replaced by a motor vehicle trip	
3	(line $1 \times$ line 2)	322,425
4	Average distance per shifted trip (miles)	12.27
5	Total Annual Motor Vehicle Miles Avoided (line 3 \times line 4)	$3,957,422$

Estimated Greenhouse Gas Emissions Reduction

Reductions in VMT will have the co-benefit of reducing mobile-source air pollutant emissions, which include greenhouse gas (GHG) emissions, criteria pollutant emissions, and air toxics emissions. All of these are regulated in California with the last two being regulated by the United States Environmental Protection Agency. Including a discussion of the emissions mentioned above will convey the entire spectrum of regulated air quality emissions.

A key issue related to GHG emissions is that vehicular travel contributes significantly to overall emissions. Statewide, transportation emissions from vehicles generate over one-third of overall emissions. At a municipal level, transportation may contribute more than 50 percent to citywide or countywide emissions ${ }^{15}$.

The South Coast Air Basin (Basin) currently fails to meet national ambient air quality standards (NAAQS) for three criteria pollutants: ozone $\left(\mathrm{O}_{3}\right)$, inhalable particulates $\left(\mathrm{PM}_{10}\right)$ and fine particulates $\left(\mathrm{PM}_{2.5}\right)$. The 1990 amendments to the federal Clean Air Act identify specific emission-reduction goals for areas such as the Basin that do not meet NAAQS. Within the Basin, automobile exhaust comprises the largest source of O_{3} precursor emissions reactive organic compounds (ROC) and nitrogen oxides (NO_{x}).

With respect to air toxics, the South Coast Air Quality Management District (SCAQMD) has recently completed the Multiple Air Toxics Exposure Study III (MATES III), which was an ambient air monitoring and evaluation study conducted in the Basin. The MATES III study concluded that the average carcinogenic risk throughout the Basin attributed to toxic air contaminants is approximately 1,194 in one million. Mobile sources (e.g., cars, trucks, trains, ships, aircraft, etc.) represent the greatest contributor to inhalation cancer risk.

Bicycle-rail trips, by reducing automobile travel, improve sustainability and livability by reducing GHG, criteria pollutant and mobile-source air toxics (MSAT) emissions. This section develops air pollutant reduction estimates and relates those estimates to annual vehicle offsets.

Senate Bill 375

Senate Bill 375 enhances California's ability to reach its AB 32 goals by promoting good planning with the goal of more sustainable communities. Per the law, the California Air Resources Board (ARB) developed regional greenhouse gas emission reduction targets for passenger vehicles, which account for a third of the states greenhouse gas emissions, during September 2010. ARB established targets for 2020 and 2035 for each region covered by one of the State's 18 metropolitan planning organizations (MPOs). Each of California's MPOs must now prepare a "sustainable communities strategy (SCS)" that demonstrates how the region will meet its greenhouse gas reduction target through integrated land use, housing and transportation planning. Once adopted by the MPO, the SCS will be incorporated into that region's federally enforceable regional transportation plan (RTP). ARB is also required to review each final SCS to determine whether it would, if implemented, achieve the greenhouse gas emission reduction target for its region. If the combination of measures in the SCS will meet the region's target, the MPO must prepare a separate "alternative planning strategy (APS)" to meet the target.

[^10]On June 30, 2010, ARB, with cooperation from a technical working group formed of MPO staff members, released its Draft Regional Greenhouse Gas Emission Reduction Targets for Automobiles and Light Trucks Pursuant to Senate Bill 375. In the draft report, the Southern California Association of Governments (SCAG), the MPO for the project area, agreed to preliminary per capita reduction targets of 8% and 13% at years 2020 and 2035, respectively, compared to base year 2005 per capita emissions levels. These official reduction targets were adopted by ARB on September 23, 2010. ${ }^{16}$

Methodology

Vehicle emission volumes are determined by several factors, including the types of vehicles in circulation, how often they are started and stopped, how they are driven (speed distribution profile), and how far they are driven (VMT). The Caltrans Emissions Factors model (CT-EMFAC) was used to estimate GHG, criteria pollutant, and MSAT emissions reductions, based on the VMT reduction estimates derived from the survey results.

CT-EMFAC is a California-specific project-level analysis tool, which models the GHG constituent pollutant carbon dioxide $\left(\mathrm{CO}_{2}\right)$, as criteria pollutant and MSAT emissions using the latest version of the California Mobile Source Emission Inventory and Emission Factors model (EMFAC2007). The model was developed by UC Davis, in coordination with Caltrans and the California Air Resources Board (CARB), and is the Caltrans preferred model for quantification of mobile-source GHG emissions. Emissions rates vary by vehicle speed, and as a result, the ratio of air pollutant emissions generated per mile is not a flat rate. This estimate reflects the diversity of vehicle speeds based on the year 2010 EMFAC2007 speed distribution profile for Los Angeles County. For GHG constituent emissions nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$) and methane $\left(\mathrm{CH}_{4}\right)$, average gram per mile emissions factors of 0.0065 and 0.016 , respectively, were used to estimate emissions. ${ }^{17}$

GHG emissions other than CO_{2} are commonly converted into carbon dioxide equivalents, which takes into account the differing global warming potential (GWP) of different gases. For example, the Intergovernmental Panel on Climate Change (IPCC) finds that $\mathrm{N}_{2} \mathrm{O}$ has a GWP of 310 and methane has a GWP of 21. Thus, emissions of 1 ton of $\mathrm{N}_{2} \mathrm{O}$ and 1 ton of CH_{4} are represented as the emissions of 310 tons and 21 tons of CO_{2} equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$, respectively. This method allows for the summation of different GHG emissions into a single total.

Combined Bicycle-Rail Use Emissions Reductions

As stated earlier, bicyclists who use the Metro system to facilitate bicycle-rail trips result in an annual VMT reduction estimate of $3,957,422$ miles. This would lead to a direct reduction in mobile-source emissions that include GHG emissions, criteria pollutant emissions, and MSAT emissions. Pollutant reduction estimates are provided below in Table 17.

[^11]Table 17: Emissions Reductions in Tons per Year

Pollutant	Emissions Reduction Estimate (Tons/Yr)
GHG Emissions (Metric Tons)	
Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$	2,144
Nitrous Oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$	9
Methane $\left(\mathrm{CH}_{4}\right)$	1
CO_{2} equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$	2,154
Criteria Pollutant Emissions	
Reactive Organic Compounds (ROC)	1.1
Nitrogen Oxides $\left(\mathrm{NO}_{x}\right)$	3.74
Carbon Monoxide (CO)	12.98
Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$	0.02
Inhalable Particulates $\left(\mathrm{PM}_{10}\right)$	0.16
Fine Particulates $\left(\mathrm{PM}_{2.5}\right)$	0.15
MSAT Emissions	
Diesel Particulate Matter	0.0928
Formaldehyde	0.0385
1,3-Butadiene	0.0042
Benzene	0.0235
Acrolein	0.0009
Acetaldehyde	0.0161

As shown above, bicyclists who use the Metro system to facilitate combined bicycle-rail trips would reduce GHG emissions by approximately 1,947 metric tons of $\mathrm{CO}_{2} \mathrm{e}$ per year. As a co-benefit, there would also be reductions in criteria air pollutants and MSAT emissions.

Vehicle Offsets

Another way to assess the benefits of the combined bicycle-rail trips is to measure the GHG emission reductions in a different context, namely vehicle offsets. On average, an automobile is driven 11,720 miles per year, producing 5.1 metric tons of $\mathrm{CO}_{2} \mathrm{e}^{18}$. The mode shift generated by combined bicycle-rail trips would take the equivalent of about 422 automobiles off the road annually.

Findings and Recommendations

Findings

This study indicates that bicyclists are a small but important subset of riders on the Metro Rail system, and bicycle-rail trips offset vehicle miles traveled resulting in quantifiable greenhouse gas emissions. The counts and extrapolated methodology mirrors commonly accepted practices in traffic analysis, with the exception of our small sample size. If a larger sample size were to validate our findings, then the following extrapolated numbers shows the potential for reducing VMT and GHGe:

[^12]- Approximately $1,195,000$ bicyclists would use the Metro Rail system annually. (Which represents 1.3 percent of all annual trips.)
- Bicycle-rail trips would replace approximately 322,000 motor vehicle trips and reduce 3.96 million vehicle miles traveled each year, offsetting approximately 2,154 metric tons of carbon dioxide equivalents $\left(\mathrm{CO}_{2 \mathrm{e}}\right)$ annually. This would be equivalent to taking 422 motor vehicles off the road. ${ }^{19}$
- Bicyclists are universally using the Metro Rail system, with bicyclists reporting starting or ending their rail trip at 71 out of 73 Metro Rail stations surveyed.
- Over a quarter (27 percent) of bicycle-rail trips replace a motor vehicle trip ${ }^{20}$.
- In terms of getting to or from the station, twelve percent of bicycle trips replaced motor vehicle trips ${ }^{21}$.
- On average, 13 bicyclists per hour-one bicyclist every five minutes-enters or exits a Metro train during the weekday morning or weekday evening peak periods. An average of 10 bicyclists per hour - one every six minutes - enters or exits a Metro train during the weekend midday period.

This study provides data on the "bikeshed" of Metro Rail stations, and underscores the importance of increasing a bicyclists' reach by providing for bicycles on transit.

- On average, bicyclists traveled 2.2 miles to access train travel (these distance are within the typical bicycling catchment area of a train station). Bicyclists taking the bus travel an average of 4.9 miles to access a station.

Bicyclists are using the Metro system just as other Metro riders do.

- Respondents generally follow commute trends, with 90 percent of respondents starting their weekday a.m. trip at home and 65 percent of respondents ending their weekday a.m. trip at work. Similarly, 54 percent of respondents started their weekday p.m. trip at work and 66 percent of respondents ended their weekday p.m. trip at home.

Accommodating bicyclists at rail stations and on trains provides mobility benefits.

- Thirteen percent of bicyclists would not make their trip if they couldn't bicycle and take the train.
- Respondents are more transit dependent than the general population, with 11 percent of respondents stating that they "rarely" have access to a motor vehicle and over a third of respondents (37 percent) stating that they "never" have access to a motor vehicle. In Los Angeles County, 9.4% of households do not have access to a motor vehicle. ${ }^{22}$

Allowing bicycles on trains is a major reason why people choose to bicycle, particularly for riders who have access to a motor vehicle.

[^13]- Survey respondents overwhelmingly said that being allowed to take their bike on the train influenced their decision to travel by bike and rail. Of the 477 people who responded to the question, 65 percent chose "allowed to take bike on train" as a factor that influenced their decision.
- Respondents with access to a motor vehicle are more likely than those without access to a motor vehicle to cite "allowed to take bike on train," "no car parking at station," "bike lockers at station," and "have to pay for car parking at station" as factors that influenced their decision to bicycle.

Women are much less likely to bicycle to a Metro Rail station than men.

- Respondents were mostly male (86 percent) and 75 percent were between the ages of 18 and 39. This percentage of female bicyclists is consistent with the data collected through the 2009 City of Los Angeles Bike Count, which found only 15% of bicyclists counted were female.
- In other California urban areas, women typically represent between 25 and 30 percent of bicyclists rather than the 14 percent found by this study, suggesting that there may be ways that Metro can increase the percentage of women using the bike-rail mode. ${ }^{23}$

Recommendations

Bicycle travel is a small but important part of travel on Metro's facilities. This study demonstrates the impact of bicycling at Metro's rail stations. This study provides empirical data on travel by bicycle on Metro's facilities. Use of this data and other similar data that may be collected in the future will be key to designing effective strategies to promote, sustain, and expand bicycle mode share across Metro's system.

One way to assess the current and potential impact of bicycling is to compare GHG reductions from bicycle trips to GHG reductions from other alternative mode options and energy saving strategies. Metro's "Greenhouse Gas Emissions Cost Effectiveness Study" (June 2010) quantified costs for, among others, bicycle facilities and incentives to reduce GHGe:

1. The options presented in that report represent two distinct investment pilots, both of which were shown to reduce GHG emissions. The cost-effectiveness of bicycle programs could be improved substantially by exploring ways to achieve the same or higher increases in bicycling at lower cost to Metro
2. Bicycle programs provide a number of co-benefits beyond emission reductions including increased safety for bicyclists and pedestrians, health benefits from increases in physical activity, and generating higher ridership on Metro buses and trains. Dollars per ton of GHG reduced are among several key criteria to judge the benefits of bicycling on Metro facilities.

[^14]3. The total potential impact of a program of coordinated bicycle investments is greater than the sum of its parts. There is a definite "network effect" to bicycle travel. While individual facilities do attract new users, more riders will be attracted to each facility when bicycles can be a safe, convenient, and efficient means of transport for all destinations in Los Angeles. The true benefits of bicycle strategies are likely to grow over time as the network becomes more robust and as more people view bicycling as a competitive mode of transportation.

Appendix A: Survey Instruments

Survey for Bicyclists
 Arriving at Station to Board Train

Directions to Surveyor - Please read aloud each question and the answers to the bicyclist, and ask them to give you their one best answer. All questions should have only one answer, unless otherwise indicated.
When reading the questions, replace " \qquad (origin)" or " \qquad (destination)," with the origin and destination that the bicyclist told you. Questions 11 through 14 are optional, and should be asked if the bicyclist has enough time.

ORIGIN

1. Where did you come from just now to get to
(origin) this train station?

HomeWorkStore, restaurant, movies, or other shopping and entertainmentFamily or friend's houseDoctor, dentist or other personal businessOther (Please specify.) \qquad
2. How did you get here? (Check all that apply.)
Biked
OWalked
BusDrove aloneCarpooledDropped off
Train/Subway/Light Rail
Other (Please specify.) \qquad
3. What are the nearest cross streets and city to \qquad (origin)?

Cross streets \qquad
City or zip \qquad
Other information that will help us identify the location (optional)

TO BE FILLED OUT BY SURVEYOR

Name

Station

Date of survey
Time of survey: \bigcirc AM Weekday \bigcirc PM Weekday \bigcirc mid-day weekend

DESTINATION

4. At which stop will you be exiting?

Station
Line (check one):
\bigcirc Red
Gold
OlueGreenPurple
5. Once you get off the train, where are you headed?
(destination)HomeWorkStore, restaurant, movies, or other shopping and entertainmentFamily or friend's houseDoctor, dentist or other personal businessOther (Please specify.) \qquad
6. How will you get there? (Check all that apply.)
Bike
Walk
BusDrive alone
Carpool
Drop offTrain/Subway/Light RailOther (Please specify.) \qquad
7. What are the nearest cross streets and city to \qquad (destination)?

Cross streets \qquad
City or zip \qquad
Other information that will help us identify the location (optional)

Metro

Survey for Bicyclists
 Arriving at Station to Board Train (continued)

MODE CHOICE

8. Think about your trip from \qquad (origin) to this station. If you didn't have your bike, how would you have made the trip? (Check all that apply.)
WalkedBus
Drove aloneCarpooledDropped offTrain/Subway/Light RailWould not have made the tripOther (Please specify.) \qquad
9. Think about your trip from the train station you're going to and
\qquad (destination). If you didn't have your bike, how would you make the trip? (Check all that apply.)
WalkBusDrive aloneCarpool Drop offTrain/Subway/Light RailWould not make the tripOther (Please specify.) \qquad
10. Think about your trip from \qquad (origin) to (destination). If you didn't have your bike and couldn't take the train, how would you make the trip? (Check all that apply.)
○
Walk
Bus
Drive aloneCarpoolDrop offWould not make the tripOther (Please specify.) \qquad

OPTIONAL QUESTIONS

To be asked by surveyors only if there is time.
"Do you have enough time to answer a few more questions?"
11. Do you have access to a car?AlwaysSometimesRarelyNever
12. Of the following choices, which ones influenced your decision to ride your bike to the train today, rather than walk, drive or take the bus? (Check all that apply.)Bike racks at the stationBike lockers at the stationAllowed to take bike on the trainGood bike facilities on the way to the stationHave to pay for car parking at the stationNo car parking at the stationNone of the above
13. What age group do you fall into?18 to 29 years30 to 39 years40 to 50 years51 to 60 years$61+$ years
14. What gender do you identify with?
(Best to have the surveyor make a note rather than ask!)MaleFemale

Encuesta para ciclistas
 que llegan a la estación para abordar el tren

Instrucciones para los encuestadores - Por favor lea en voz alta cada pregunta y respuesta a los ciclistas y pída que le den la mejor respuesta. Todas las preguntas deben tener sólo una respuesta a menos que se indique lo contrario.

Cuando lea la pregunta reemplace" \qquad (origen)" 0 " \qquad (destino)," con el origen y destino que el ciclista le indicó. Las preguntas 11 al 14 son opcionales y deben ser preguntadas si el ciclista tiene suficiente tiempo.

ORIGEN

1. ¿De dónde acaba de venir para llegar a esta (origen) estación de tren?

CasaTrabajoTienda, restaurante, cine u otro lugar de compras y entretenimientoCasa de familia o amigosDoctor, dentista u otro negocio personalOtro (Por favor especifique.)
2. ¿Cómo llegó? (Marque todas las que corresponden.)
O
En bicicletaCaminandoEn autobúsConduciendo soloEn camioneta compartidaLo trajeronEn tren/tren subterráneo/tren ligeroOtro (Por favor especifique.)
3. ¿Cuáles son las calles de cruce y ciudad más cercana a \qquad (origen)?

Calles de cruce \qquad
Ciudad o código postal \qquad
Otra información que pueda ayudarnos a identificar el lugar (opcional)

PARA SER LLENADO POR EL ENCUESTADOR

Nombre
Ubicación de la estación
Fecha de la encuesta
Hora de la encuesta:
AM entre semanaPM entre semana
Medio día fin de semana

DESTINO

4. ¿En qué parada bajará?

Estación
Línea (Marque una.):
\bigcirc Red
Gold
Blue
Green
Purple
5. Una vez que baje del tren, ¿a dónde irá?
(destino)CasaTrabajoTienda, restaurante, cine u otro lugar de compras y entretenimientoCasa de familia o amigosDoctor, dentista u otro negocio personalOtro (Por favor especifique.)
6. ¿Cómo llegará? (Marque todas las que corresponden.)En bicicletaCaminandoEn autobúsConduciendo soloEn camioneta compartidaLo trajeronEn tren/tren subterráneo/tren ligeroOtro (Por favor especifique.)
7. ¿Cuáles son las calles de cruce y ciudad más cercana a \qquad (destino)?

Calles de cruce \qquad
Ciudad o código postal \qquad
Otra información que pueda ayudarnos a identificar el lugar (opcional)

Metro

Encuesta para ciclistas que llegan a la estación para abordar el tren (coninuado)

ELECCIÓN DEL MODO DE TRANSPORTE

8. Piense en su viaje desde \qquad (origen) hasta esta estación. Si no tuviera su bicicleta, ¿cómo habría llegado? (Marque todas las que corresponden.)
CaminandoEn autobúsConduciendo soloEn camioneta compartidaLo hubieron traídoEn tren/tren subterráneo/tren ligeroNo hubiera hecho el viajeOtro (Por favor especifique.) \qquad
9. Piense en su viaje desde la estación de tren a la que va y (destino). Si no tuviera su bicicleta, ¿cómo llegaría? (Marque todas las que corresponden.)CaminandoEn autobúsConduciendo soloEn camioneta compartidaLo hubieron traídoEn tren/tren subterráneo/tren ligeroNo hubiera hecho el viajeOtro (Por favor especifique.) \qquad
10. Ahora piense en su viaje de \qquad (origen) a (destino). Si no tuviera su bicicleta y no pudiera tomar el tren, ¿cómo llegaría? (Marque todas las que corresponden.)
CaminandoEn autobús
Conduciendo soloEn camioneta compartidaLo hubieron IlevadoNo hubiera hecho el viajeOtro (Por favor especifique.) \qquad

Survey for Bicyclists
 Departing from Station after Exiting Train

Directions to Surveyor - Please read aloud each question and the answers to the bicyclist, and ask them to give you their one best answer. All questions should have only one answer, unless otherwise indicated.
When reading the questions, replace "__ (origin)" or " \qquad (destination)," with the origin and destination that the bicyclist told you. Questions 11 and 12 are optional, and should be asked if the bicyclist has enough time.

ORIGIN

1. At which station did you board the train?

Station
Line (Check one.):
\bigcirc Red
Gold
Blue
Green
Purple
2. How did you get to that train station?
Biked
Walked
BusDrove alone
Carpooled
Dropped offTrain/Subway/Light RailOther (Please specify.) \qquad
3. Where were you coming to the station from?
(origin)
\bigcirc
HomeWorkStore, restaurant, movies, or other shopping and entertainmentFamily or friend's houseDoctor, dentist or other personal business
Other (Please specify.) \qquad
4. What are the nearest cross streets and city to \qquad (origin)?

Cross streets \qquad
City or zip \qquad
Other information that will help us identify the location (optional)

TO BE FILLED OUT BY SURVEYOR

Name

\qquad
Station
Date of survey
Time of survey: \bigcirc AM Weekday \bigcirc PM Weekday \bigcirc mid-day weekend

DESTINATION

5. Where are you going right now?
(destination)
HomeWorkStore, restaurant, movies, or other shopping and entertainmentFamily or friend's houseDoctor, dentist or other personal businessOther (Please specify.) \qquad
6. How will you get there?
Bike
Walk
BusDrive alone
Carpool
Drop offTrain/Subway/Light RailOther (Please specify.)
7. What are the nearest cross streets and city to \qquad (destination)?

Cross streets \qquad
City or zip \qquad
Other information that will help us identify the location (optional)

Survey for Bicyclists Departing from Station after Exiting Train (conimued)

MODE CHOICE

8. Think about your trip from this station to \qquad (destination).
If you didn't have your bike, how would you get there? (Check all that apply.)
Walk
Bus
Drive aloneCarpool
Drop offTrain/Subway/Light RailWould not make the tripOther (Please specify.)
9. Think about your trip from \qquad (origin) to the train station where you boarded. If you didn't have your bike, how would you have made the trip?WalkedDrove aloneCarpooled
○
Dropped offTrain/Subway/Light RailWould not have made the tripOther (Please specify.) \qquad
10. Now think about your trip from \qquad (origin) to (destination). If you didn't have your bike and couldn't take the train, how would you get there?
Walk
Bus
Drive aloneCarpool Drop offTrain/Subway/Light RailWould not make the tripOther (Please specify.) \qquad

OPTIONAL QUESTIONS

To be asked by surveyors only if there is time.
"Do you have enough time to answer a few more questions?"
11. Do you have access to a car?
Always
Sometimes
Rarely Never
12. Of the following choices, which ones influenced your decision to ride your bike to the train today, rather than walk, drive or take the bus? (Check all that apply.)Bike racks at the stationBike lockers at the stationAllowed to take bike on the trainGood bike facilities on the way to the stationHave to pay for car parking at the stationNo car parking at the stationNone of the above
13. What age group do you fall into?18 to 29 years30 to 39 years40 to 50 years51 to 60 years$61+$ years
14. What gender do you identify with? (Best to have the surveyor make a note rather than ask!)MaleFemale

Metro

Encuesta para ciclistas
 que salen de la estación después de bajar del tren

Instrucciones para los encuestadores - Por favor lea en voz alta cada pregunta y respuesta a los ciclistas y pída que le den la mejor respuesta. Todas las preguntas deben tener sólo una respuesta a menos que se indique lo contrario.
Cuando lea la pregunta reemplace " \qquad (origen)" 0 " \qquad (destino)," con el origen y destino que el ciclista le indicó. Las preguntas 11 al 14 son opcionales y deben ser preguntadas si el ciclista tiene suficiente tiempo.

ORIGEN

1. ¿En qué estación tomó el tren?

Estación \qquad
Línea (Marque una.):
\bigcirc Red
Gold
Oblue
Green
Purple
2. ¿Cómo llegó a esa estación del tren?
En bicicleta
Caminando
On autobús
○
Conduciendo soloEn camioneta compartidaLo trajeron
En tren/tren subterráneo/tren ligeroOtro (Por favor especifique.)
3. ¿De dónde viajó para llegar a esa estación?
(origen)
Casa
Trabajo
Tienda, restaurante, cine u otro lugar de compras y entretenimiento
Casa de familia o amigosDoctor, dentista u otro negocio personalOtro (Por favor especifique.) \qquad

PARA SER LLENADO POR EL ENCUESTADOR
Nombre
Ubicación de la estación
Fecha de la encuesta
Hora de la encuesta:
AM entre sema
PM entre semana
Medio día fin de semana
4. ¿Cuáles son las calles de cruce y ciudad más cercana
a \qquad (origen)?

Calles de cruce \qquad
Ciudad o código postal \qquad
Otra información que pueda ayudarnos a identificar el lugar (opcional)

DESTINO

5. ¿Hacia dónde se dirige?
(destino)
CasaTrabajoTienda, restaurante, cine u otro lugar de compras y entretenimientoCasa de familia o amigosDoctor, dentista u otro negocio personalOtro (Por favor especifique.)
6. ¿Cómo llegará?
On bicicletaCaminandoEn autobúsConduciendo soloEn camioneta compartidaLo trajeronEn tren/tren subterráneo/tren ligeroOtro (Por favor especifique.) \qquad

7. ¿Cuáles son las calles de cruce y ciudad más cercana a \qquad (origin)?

Calles de cruce \qquad
Ciudad o código postal \qquad
Otra información que pueda ayudarnos a identificar el lugar (opcional)

ELECCIÓN DEL MODO DE TRANSPORTE

8. Piense en su viaje desde esta estación hacia \qquad (destino). Si no tuviera su bicicleta, ¿cómo llegaría?CaminandoEn autobúsConduciendo soloEn camioneta compartidaLo hubieron traídoEn tren/tren subterráneo/tren ligeroNo hubiera hecho el viajeOtro (Por favor especifique.) \qquad
9. Piense en su viaje desde \qquad (origen) hacia la estación en la que abordo el tren. Si no tuviera su bicicleta, ¿cómo habría llegado a la estación del tren?Caminando
On autobúsEn camioneta compartidaEn tren/tren subterráneo/tren ligeroNo hubiera hecho el viajeOtro (Por favor especifique.)Conduciendo soloLo hubieron traído
\qquad
10. Ahora piense en su viaje de \qquad (origen) a (destino). Si no tuviera su bicicleta y no pudiera tomar el tren, ¿cómo llegaría?CaminandoEn autobúsConduciendo soloEn camioneta compartidaLo hubieron llevadoNo hubiera hecho el viajeOtro (Por favor especifique.) \qquad

PREGUNTAS OPCIONALES

Para ser incluidas en cada encuesta y preguntadas por los encuestadores sólo si hay tiempo.
"¿Tiene suficiente tiempo para contestar dos preguntas más?"
11. ¿Tiene acceso a un auto?
Siempre
Algunas vecesRaramente
Nunca
12. De las siguientes opciones, ¿cuales influenciaron su decisión para ir en bicicleta hacia el tren hoy, en vez de caminar, conducir, tomar el autobús? (Marque todas las que corresponden.)
Portabicicletas en la estación
Casilleros para bicicletas en la estación
Se le permite llevar la bicicleta en el trenBuenas instalaciones para bicicletas en el camino a la estaciónTiene que pagar por estacionamiento de auto en la estaciónNo hay estacionamiento de auto en la estaciónNinguna de las anteriores
13. ¿A qué grupo de edad pertenece?
18 a 29 años
30 a 39 años
40 a 50 años
51 a 60 añosmás de 61 años
14. ¿Con qué género se identifica? (iEs preferible que el encuestador haga una nota en vez de preguntar!)MasculinoFemenino

Appendix B: Additional Survey Data Tables

Survey responses to the questions: Which station did you board the train? At which stop will you be exiting?					
Blue	180	191	Gold (con't)		
103rd St	3	5	Mission	1	5
1st St	1	16	Pico / Aliso	1	1
5th St		4	Sierra Madre Vila	19	13
7th / Metro	30	19	Soto	1	
Anaheim	5	4	Southwest Museum	1	0
Artesia	1	10	Union Station	1	13
Compton	3	13	(blank)	1	2
Del Amo	25	7	Green	114	107
Firestone	3	6	Avalon	1	4
Florence	49	19	Aviation	18	14
Grand	28	30	Crenshaw	29	11
Imperial / Wilmington	16	15	Douglas	1	2
Pacific		1	El Segundo	2	8
Pacific Coast Hwy	3	5	Hawthorne	4	7
Pico		3	Imperial / Wilmington	2	3
San Pedro	2	5	Lakewood		5
Slauson	5	6	Long Beach	7	7
Transit Mall	1	1	Mariposa	4	2
Vernon		4	Norwalk	32	25
Wardlow		1	Redondo Beach	13	16
Washington	3	13	Union Station	1	
Willow	1	3	Vermont		2
(blank)	1	1	(blank)		1
Gold	96	85	Red/Purple	212	219
Allen	2	1	7th / Metro	4	10
Atlantic	21	12	Civic Center	8	4
Chinatown	3	2	Hollywood / Highland	7	15
Del Mar	2	2	Hollywood / Vine	6	12
Fillmore	1	1	Hollywood / Western	1	5
Highland Park	27	15	North Hollywood	41	35
Indiana	2	1	Pershing Square	7	7
Lake	1	7	Union Station	11	18
Lincoln / Cypress	3	2	Universal City	4	7
Little Tokyo	4	3	Vermont / Beverly	1	
Maravilla	1	1	Vermont / Santa Monica	22	21
Mariachi Plaza	3	1	Vermont / Sunset	3	5
Memorial Park	1	3	Westlake / MacArthur	17	23

Calculations for Average Distance for Shifted Trips

Number of Shifted Trips for Which we can calculate distance	Total Vehicle Miles	Average Miles per Shifted Trip

Trips to or

from a station	995	2657	2.67

Trips from
origin to
destination
114
1399
12.27

Appendix C: Additional Count Data Tables and Charts

AM Weekday, PM Weekday, Midday Weekend Bicycle Counts by

Station

Station	Line	AMWeekday	PMWeekday	Weekend	Total	Hourly Counts	Notes
Imperial/Wilmington	Blue	102	185	50	337	33.7	Transfer Station
7th St/Metro Center	Blue	131	132	52	315	31.5	Transfer Station
Wilshire/Vermont	Red	98	94	22	214	21.4	
Florence	Blue	63	88	no data	151	18.9	
Norwalk	Green	69	64	15	148	14.8	End of line
Crenshaw	Green	47	64	21	132	13.2	
Westlake/MacArthur Park	Purple/Red	50	51	16	117	11.7	
Del Amo	Blue	46	53	13	112	11.2	
Vermont/Santa Monica	Red	30	35	38	103	10.3	Transfer Station
Wilshire/Western	Purple	36	46	no data	82	10.3	End of line
Aviation/LAX	Green	42	43	11	96	9.6	
North Hollywood	Red	44	26	23	93	9.3	End of line
Grand	Blue	42	36	15	93	9.3	
Highland Park	Gold	35	35	22	92	9.2	
Sierra Madre Villa	Gold	31	35	13	79	7.9	End of line
Redondo Beach	Green	20	21	12	53	5.3	End of line
Atlantic	Gold	11	26	12	49	4.9	End of line
1st Street	Blue	9	15	3	27	2.7	End of line
Mariachi Plaza	Gold	3	4	5	12	1.2	
Total		909	1053	343	2,305	12.4	

C-2

Appendix D: Schematic Maps

Appendix E: Emmissions Calculations

Appendix E: Emmissions Calculations

Running Exhaust Emissions (grams)

Pollutant Name : TOG_exh				
speed (mph)	Emission Factor(grams/mile)	VMT by Speed	VMT-Speed Distribution (\%)	Emissions by Speed
5	0.875000	0.00	0.00	0.000000
10	0.557000	39,574.22	1.00	22,042.840540
15	0.357000	118,722.66	3.00	42,383.989620
20	0.250000	554,039.08	14.00	138,509.770000
25	0.198000	514,464.86	13.00	101,864.042280
30	0.163000	514,464.86	13.00	83,857.772180
35	0.140000	316,593.76	8.00	44,323.126400
40	0.127000	277,019.54	7.00	35,181.481580
45	0.120000	237,445.32	6.00	28,493.438400
50	0.120000	237,445.32	6.00	28,493.438400
55	0.128000	197,871.10	5.00	25,327.500800
60	0.142000	197,871.10	5.00	28,097.696200
65	0.167000	118,722.66	3.00	19,826.684220
70	0.185000	633,187.52	16.00	117,139.691200
75	0.211000	0.00	0.00	0.000000
Total		3,957,422.00	100.00	715,541.471820

speed(mph)	Emission Factor(grams/mile
5	0.012000
10	0.009000
15	0.007000
20	0.006000
25	0.005000
30	0.004000
35	0.004000
40	0.004000
45	0.004000
50	0.004000
55	0.004000
60	0.004000
65	0.005000
70	0.005000
75	0.005000

Total

Pollutant Name : Diesel_PM

speed(mph) Emission Factor(grams/mile)

5	0.072650
10	0.050700
15	0.034750
20	0.025300
25	0.021200
30	0.018200
35	0.016200
40	0.015150
45	0.015000
50	0.015700
55	0.017300
60	0.019700
65	0.022950
70	0.027050
75	0.032050

Total

VMT by Speed VMT-Speed Distribution (\%)

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

3,957,422.00
100.00

VMT by Speed VMT-Speed Distribution (\%)

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

3,957,422.00
100.00

Emissions by Speed
0.000000
356.167980
831.058620 831.058620
324.234480 2,572.324300 2,057.859440 1,266.375040 $1,266.375040$
$1,108.078160$ 949.781280 949.781280 791.484400 791.484400 593.613300 3,165.937600
0.000000

18,758.180280

Emissions by Speed
0.000000 2,006.412954 4,125.612435 14,017.188724 10,906.655032 9,363.260452 5,128.818912 4,196.846031 3,561.679800 3,727.891524 3,423.170030 3,898.060670 2,724.685047 17,127.722416
0.000000

84,208.004027
speed (mph) Emission Factor(grams/mile)

5	0.132000
10	0.089000
15	0.061000
20	0.045000
25	0.036000
30	0.030000
35	0.026000
40	0.024000
45	0.023000
50	0.024000
55	0.025000
60	0.029000
65	0.033000
70	0.037000
75	0.042000

Total

Pollutant Name . PM10

speed(mph) Emission Factor(grams/mile)

5	0.143000
10	0.097000
15	0.067000
20	0.048000
25	0.039000
30	0.032000
35	0.028000
40	0.026000
45	0.025000
50	0.026000
55	0.028000
60	0.031000
65	0.036000
70	0.040000
75	0.045000

Total

VMT by Speed VMT-Speed Distribution (\%)

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

3,957,422.00
100.00

Emissions by Speed
0.000000

3,522.105580 7,242.082260 24,931.758600 $18,520.734960$ $15,433.945800$ 8,231.437760 6,648.468960 5,461.242360 5,698.687680 , 698.687680 4,946.777500 3,917.847780 23,427.938240
0.000000

133,721.289380

Emissions by Speed
0.000000 3,838.699340 7,954.418220 26,593.875840 20,064.129540 $16,462.875520$ 8,864.625280 7,202.508040 5,936.133000 6,173. 578320 5,540.390800 6,134.004100 4,274.015760 $25,327.500800$
0.000000

144,366.754560
speed(mph) Emission Factor (grams/mile)

5	1.575000
10	1.206000
15	0.970000
20	0.856000
25	0.805000
30	0.771000
35	0.752000
40	0.746000
45	0.754000
50	0.777000
55	0.818000
60	0.881000
65	0.975000
70	1.085000
75	1.251000

VMT by Speed VMT-Speed Distribution (\%)

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

$3,957,422.00$
100.00

Emissions by Speed

0.000000

47,726.509320
115,160.980200 474,257.452480 414,144.212300 396,652.407060 238,078.507520 206,656.576840 179,033.771280 184,495.013640 161,858.559800 161,858.559800 114,754.593500 687,008.459200
0.000000

3,395,151.482240

Emissions by Speed
0.000000

1,389.411290 2,275.794670 6,540.431339 4,898.734397 4,030. 317713 2,104.715316 1,631.922110 1,312.122838 1,315.447073 1,174.364979 1,333.453343 947.406827 5,934.866625
0.000000

34,888.988520
speed(mph) Emission Factor(grams/mile)
$1,212.895000$
924.462000
731.045000
600.510000
515.724000
458.540000
421.562000
400.405000
392.743000
397.829000
416.352000
450.572000
504.788000
512.026000
523.366000
924.462000 731.045000 600.510000 515.724000 421.562000 400.405000 392.743000 416.352000 450.572000 512.026000 523.366000

VMT by Speed
VMT-Speed Distribution (

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

3,957,422.00
100.00

Emissions by Speed

0.000000

36,584,862.569640 86,791,606.979700 332,706,007.930800 $265,321,875.458640$ 235,902,716.904400 $133,463,898.653120$ 110,920,008.913700 93,254,987.312760 94,462,634.210280 82,384,028.227200 89,155,177.269200 59,929,774.096080 324,208,473.115520
0.000000
$1,945,086,051.641040$

VMT by Speed
VMT-Speed Distribution (\%)

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

3,957,422.00
6.139000
6.139000
4.983000
4.179000
3.610000
3. 207000
2.904000
2.677000
2.514000
2.412000
2.371000
2.403000
2.532000
2.800000
3.080000
3.557000
speed (mph) Emission Factor(grams/mile)

5	0.003895
10	0.002582
15	0.001775
20	0.001302
25	0.001034
30	0.000858
35	0.000746
40	0.000681
45	0.000653
50	0.000660
55	0.000701
60	0.000788
65	0.000927
70	0.001025
75	0.001179

Total
speed(mph) Emission Factor(grams/mile)

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

0.013555
0.008904
0.006339
. 005042
0.004174
0.003613
0.003282
0.003134
0.003158
0.003355
0.003770
0. 004432
0.004932
0.005685

VMT by Speed VMT-Speed Distribution (\%)

0.00	0.00
$39,574.22$	1.00
$118,722.66$	3.00
$554,039.08$	14.00
$514,464.86$	13.00
$514,464.86$	13.00
$316,593.76$	8.00
$277,019.54$	7.00
$237,445.32$	6.00
$237,445.32$	6.00
$197,871.10$	5.00
$197,871.10$	5.00
$118,722.66$	3.00
$633,187.52$	16.00
0.00	0.00

3,957,422.00
100.00

Emissions by Speed
0.000000
102.180636
210.732722
721.358882
531.956665
441.410850
236.178945
188.650307
155.051794
156.713911
156.713911
138.707641
155.922427
110.055906
649.017208
0.000000

3,797.937893

Emissions by Speed
0.000000
536.428552

1,057.106565
3,512.053728 2,593.931824 2,147.376326
1,143.853255
909.178130
744.153633
749.852321
663.857541
745.974047
526.178829

3,122.880849
0.000000
$18,452.825598$
speed(mph) Emission Factor(grams/mile)

5	0.000768
10	0.000523
15	0.000375
20	0.000282
25	0.000223
30	0.000185
35	0.000162
40	0.000148
45	0.000142
50	0.000144
55	0.000152
60	0.000171
65	0.000201
70	0.000220
75	0.000250

Total

Pollutant Name : ACETALDEHYDF
speed(mph) Emission Factor(grams/mile)

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

0.015686
0.008248
0.004900
0.003969
0.003261
0.002753
0.00242
0.002264
0.002267
0.002436
0.002776
0.003296
0.003935
0.004767

VMT by Speed VMT-Speed Distribution (\%)
0.00
$39,574.22$
$118,722.66$
$554,039.08$
$514,464.86$
$514,464.86$
$316,593.76$
$277,019.54$
$237,445.32$
$237,445.32$
$197,871.10$
$197,871.10$
$118,722.66$
$633,187.52$
0.00

3,957,422.00
0.00
1.00
3.00
14.00
13.00
13.00
8.00
7.00
6.00
6.00
5.00
5.00
3.00
16.00
0.00
100.00

Emissions by Speed
0.000000
20.697317
44.520998
156.239021
114.725664
95.175999
51.288189
40.998892
33.717235
34.192126
30.076407
33.835958
23.863255
139.301254
0.000000
818.632315

Emissions by Speed
0.000000 620.761215 979.224500

2,714.791492 2,041.911029 1,677.669908 871.582621 671.495365 537.576204 538.288540 482.014000 549.290174 391.309887 2,491.592891
0.000000
$14,567.507827$

Idling Emissions (grams) (Currently NOT Available)

Evaporative Running Loss Emissions (grams)

Pollutant Name : TOG_los
Emission Factor(grams/min) total running time(hrs)
0.040000
$121,065.68$
Emissions
$290,557.639500$

Pollutant Name : FORMALDEHYDE
Emission Factor(grams/min)
total running time(hrs)
Emissions
0.000000

Pollutant Name : BUTADIENE
Emission Factor(grams/min)
total running time(hrs)
Emissions
0.000003
$121,065.68$
21.791823

Pollutant Name : BENZENE

Emission Factor(grams/min)
total running time(hrs)
Emissions
0.000399

121,065.68
2,898.312454

Pollutant Name : ACROLEIN

Emission Factor(grams/min)
0.000000
total running time(hrs)
$121,065.68$
Emissions
0.000000

Pollutant Name : ACETALDEHYDE
0.000000

Emissions
0.000000

Total Emissions

Pollutant Name	Total Emissions (grams)	Total Emissions (Kilograms)	Total Emissions (US Tons)
TOG	1,006,099.111320	1,006.099111	1.109034430
SO_{2}	18,758.180280	18.758180	0.020677354
Diesel_PM	84,208.004027	84.208004	0.092823435
PM2. 5	133,721.289380	133.721289	0.147402490
PM10	144,366.754560	144.366755	0.159137106
NOX	3,395,151.482240	3,395.151482	3.742513881
FORMALDEHYDE	34,888.988520	34.888989	0.038458527
CO_{2}	1,945,086,051.641040	1,945,086.051641	2,144.090355445
CO	11,776,100.645400	11,776.100645	12.980928940
BUTADIENE	3,819.729716	3.819730	0.004210531
BENZENE	21,351.138052	21.351138	0.023535601
ACROLEIN	818.632315	0.818632	0.000902388
ACETALDEHYDE	14,567.507827	14.567508	0.016057929

Methane and Nitrous Oxide Calculations
Annual VMT 3,957,422

Grams/Mile Emissions Factors
Methane 0.0160

Nitrous Oxide 0.0065

Annual Emissions in Tons
Methane 0.07
Nitrous Oxide 0.03
CO_{2}-Equevalent Emissions in Tons
Methane
1.47

Nitrous Oxide 8.79

Appendix F: References

California Air Resources Board. May 2010. Local Government Operations Protocol for the Quantification and Reporting of Greenhouse Gas Emissions Inventories, Version 1.1.

Intergovernmental Panel on Climate Change (IPCC). February 2007. Climate Change 2007: The Physical Science Basis: Summary for Policymakers.

South Coast Air Quality Management District. September 2008. Multiple Air Toxics Exposure Study (MATES III).

[^0]: ${ }^{1}$ Caltrans Emissions Factors model (CT-EMFAC) is a California-specific project-level analysis tool, which models the GHG constituent pollutant CO_{2}, as criteria pollutant and MSAT emissions using the latest version of the California Mobile Source Emission Inventory and Emission Factors model. The model was developed by UC Davis, in coordination with Caltrans and the California Air Resources Board (CARB), and is the Caltrans preferred model for quantification of mobile-source GHG emissions.

[^1]: ${ }^{2}$ On average, an automobile is driven 11,720 miles per year, producing 5.1 metric tons of $\mathrm{CO}_{2} \mathrm{e}$.
 ${ }^{3}$ Origin to final destination, or A to D trip.
 ${ }^{4}$ Origin to train station, for example, A to B or B to C trip.
 ${ }^{5}$ U.S. Census Bureau, 2006-2008 American Community Survey3-Year Estimates.

[^2]: ${ }^{6}$ The Seamless Travel Study by U.C. Berkeley's Safe Transportation Research and Education Center (2010) conducted intercept surveys of 212 bicyclists at 25 locations throughout San Diego County and found a gender breakdown of 68% male, 32% female. The San Francisco State of Cycling Report Card (2008) conducted intercept surveys of bicyclists and found a gender breakdown of 73% male, 23% female. Portland, Oregon, which has constructed an extensive network of bicycle facilities over the last decade and has an outreach program targeted to women bicyclists, has seen the percentage of female bicyclists increase to 32% as of 2009 .

[^3]: ${ }^{7}$ United States Department of Transportation, Policy Statement on Bicycle and Pedestrian Accommodation Regulations and Recommendations. (Signed on March 11, 2010 and announced March 15, 2010)

[^4]: ${ }^{8}$ SCAG, Maximizing Mobility in Los Angeles - First and Last Mile Strategies. Accessed July 7, 2010. http://www.scag.ca.gov/nonmotorized/pdfs/LA-Maximizing-Mobility-Final-Vol1.pdf

[^5]: ${ }^{9}$ Geographical distribution and bicycle amenities were taken into consideration in an effort to obtain results from a variety of metropolitan living conditions, which would influence a person's usage of this mode-choice.

[^6]: ${ }^{10}$ Bicycle counts were not recorded at two of the 19 stations during the weekend because the counts were not turned in despite repeated follow-up with volunteers (see Table 3).

[^7]: ${ }^{11}$ The Seamless Travel Study by U.C. Berkeley's Safe Transportation Research and Education Center (2010) conducted intercept surveys of 212 bicyclists at 25 locations throughout San Diego County and found a gender breakdown of 68% male, 32% female. The San Francisco State of Cycling Report Card (2008) conducted intercept surveys of bicyclists and found a gender breakdown of 73% male, 23% female. Portland, Oregon, which has constructed an extensive network of bicycle facilities over the last decade and has an outreach program targeted to women bicyclists, has seen the percentage of female bicyclists increase to 32% as of 2009 .

[^8]: ${ }^{12}$ This methodology was developed specifically for this study but was based on the standard methodology of extrapolating annual traffic counts from peak hour counts.
 ${ }^{13}$ Bicycle counts were not recorded at two of the 19 stations during the weekend. With two other stations not in operation in FY2009, only 15 stations were sampled for the weekend.

[^9]: ${ }^{14}$ In FY 2009, the Metro rail system recorded 185 million boardings and alighting, which equates to approximately 92.9 million trips (a trip equals one boarding and one alighting).

[^10]: ${ }^{15}$ CoolCalifornia.org, Green L.A.: Climate Action Plan to Lead Nation, accessed January 5, 2011.

[^11]: ${ }^{16}$ California Air Resources Board, Draft CEQA Functional Equivalent Document (SCH\#2010081021) for Proposed Regional Greenhouse Gas Emission Reduction Targets for Automobiles and Light Trucks Pursuant to Senate Bill 375, August 9, 2010; California Air Resources Board, "News Release: California Takes the First Step Toward More Livable, Sustainable Communities," September 23, 2010, http://www.arb.ca.gov/newsrel/newsrelease.php?id=154, accessed January 6, 2011.
 ${ }^{17}$ Derived by averaging the passenger vehicle emissions factors for years 2005 through 2008 provided in the Local Government Operations Protocol for the Quantification and Reporting of Greenhouse Gas Emissions Inventories, Version 1.1, May 2010, prepared by the California Air Resources Board.

[^12]: ${ }^{18}$ United States Environmental Protection Agency, Greenhouse Gas equivalencies calculator (http://www.epa.gov/cleanenergy/energy-resources/calculator.html\#results), May 31, 2011.

[^13]: ${ }^{19}$ On average, an automobile is driven 11,720 miles per year, producing 5.1 metric tons of $\mathrm{CO}_{2} \mathrm{e}$.
 ${ }^{20}$ Origin to final destination, or A to D trip.
 ${ }^{21}$ Origin to train station, for example, A to B or B to C trip.
 ${ }^{22}$ U.S. Census Bureau, 2006-2008 American Community Survey 3-Year Estimates.

[^14]: ${ }^{23}$ The Seamless Travel Study by U.C. Berkeley's Safe Transportation Research and Education Center (2010) conducted intercept surveys of 212 bicyclists at 25 locations throughout San Diego County and found a gender breakdown of 68% male, 32% female. The San Francisco State of Cycling Report Card (2008) conducted intercept surveys of bicyclists and found a gender breakdown of 73% male, 23% female. Portland, Oregon, which has constructed an extensive network of bicycle facilities over the last decade and has an outreach program targeted to women bicyclists, has seen the percentage of female bicyclists increase to 32% as of 2009 .

