

# **Pre & Pro Haptens in Fragrance:**

Part 2 - Hydrolysis







#### 1. Chemistry and Theory

From an analysis of the "perfumer's palette" three classes of ingredients were identified as hydrolysable, and therefore with potential to form additional chemicals, post fragrance creation:

- Esters
- Acetals
- Schiff bases

Aldehydes and alcohols (potential haptens)

Opportunities for Hydrolysis:

In fragrance

(abiotic)

• In consumer product

(abiotic)

On Skin

(biotic)

#### Esters:

$$\begin{array}{c} H^{+} \\ OH^{-} \\ R \end{array} \qquad \begin{array}{c} O \\ Enzyme \\ R \end{array} \qquad \begin{array}{c} O \\ O \end{array} \qquad \begin{array}{c} OH^{-} \\ H_{2}O \end{array} \qquad \begin{array}{c} OH \\ R \end{array} \qquad \begin{array}{c} OH \\ OH \end{array} \qquad \begin{array}{c} OH \\ R \end{array} \qquad \begin{array}{c} OH \\ OH \end{array} \qquad$$

#### Acetals:

 $H^{+}$ 

## Schiff Bases:

# 2. Analytical Evidence for Hydrolysis in Real Systems

Biotic (on skin)







#### **Biotic Considerations:**

#### **Local Lymph Node Assay (LLNA) Data (Animal)**

#### <u>Isoeugenyl acetate</u>:

#### **RIFM Database**

| Concentration | LLNA              |
|---------------|-------------------|
| tested, %     | Stimulation Index |
| 1.0           | 1.07              |
| 2.5           | 0.69              |
| 5.0           | 0.65              |
| 10.0          | 1.0               |
| 25.0          | 0.98              |

Non-sensitiser

#### <u>Isoeugenol</u>:

Gerberick et al (2005) Dermatitis, 16

| Concentration | LLNA              |
|---------------|-------------------|
| tested, %     | Stimulation Index |
| 0.5           | 1                 |
| 1.0           | 1.1               |
| 5.0           | 12.4              |

EC3 = 1.2% (moderate sensitiser)

#### Repeated Insult Patch Test (RIPT) Data (Human)

2% Isoeugenyl acetate showed no sensitisation effects during a series of nine 24 hour closed induction applications over a 3 week period

(From RIFM database - Harrison and Stolman)

In-vivo skin sensitisation data suggests that Isoeugenyl Acetate does not hydrolyse rapidly enough in skin that it should be considered equivalent to isoeugenol with regard to sensitisation induction

#### Abiotic Considerations: The Complexity

Based on a chemical appraisal of the perfumers palette, 124 chemicals can be identified as having potential to form one or more of the original "list of 26" via hydrolysis

Rate of Hydrolysis will depend on chemistry of Product Matrix, e.g:

pH Water activity Catalysts

...and physical conditions of storage, e.g.

**Temperature** 

.... as a function of time

Higher levels of the 26

124 CHEMICALS

#### Abiotic Study: Rationalisation of Product matrices

10 commercial Cosmetic product bases were selected as a representative cross section

Un-fragranced product bases were manufactured at pilot-scale

- Soap based Toilet Bar
- Non soap based Toilet Bar
- Shampoo
- Hair conditioner
- Antiperspirant deodorant
- Emulsion roll-on deodorant
- Body spray
- Aftershave
- Calcium Carbonate based Toothpaste
- Silica based Toothpaste

#### Abiotic Study: Rationalisation of Precursors

Four "probes" were designed (including 18 of the 124) to ensure:

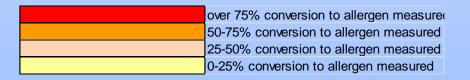
- An example from most common chemical groups was included (to allow read across for those not included)
- None of the precursors in each "probe" would give rise to the same "allergen"

| PROBE 1                 | PROBE 2                          |
|-------------------------|----------------------------------|
|                         |                                  |
| Benzyl acetate          | alpha-amyl cinnamic aldehyde dma |
| Citronellyl acetate     | Benzyl salicylate                |
| Geranyl acetate         | Citronellyl formate              |
| Eugenyl acetate         | Linalyl acetate                  |
|                         | Farnesyl acetate                 |
|                         |                                  |
| PROBE 3                 | PROBE 4                          |
|                         |                                  |
| Cinnamyl acetate        | Citral dea                       |
| Iso-eugenyl acetate     | Iso-eugenyl benzyl ether         |
| Benzyl benzoate         | Terpineol extra                  |
| Citronellyl isovalerate | Cinnamyl cinnamate               |
| Aurantiol               |                                  |

**Table 5. Probe Compositions** 

#### Abiotic Study: Design

- 10 un-fragranced Cosmetic product matrices
- 4 "probes" (containing 4-5 precursors)
- Probes dosed to deliver 0.2% of each precursor
- Samples stored at 20°C and 37°C (in triplicate)
- Samples analysed at T = 0, T = 4wks and T = 12 wks
- Precursor and product (allergens) extracted and measured at each time point


The amount of allergen produced for each potential precursor in each product matrix was assigned into quartiles:

| over 75% conversion to allergen measured |
|------------------------------------------|
| 50-75% conversion to allergen measured   |
| 25-50% conversion to allergen measured   |
| 0-25% conversion to allergen measured    |

### Abiotic Study: Results Summary

#### Summary of results @ 37C (i.e., worst case)

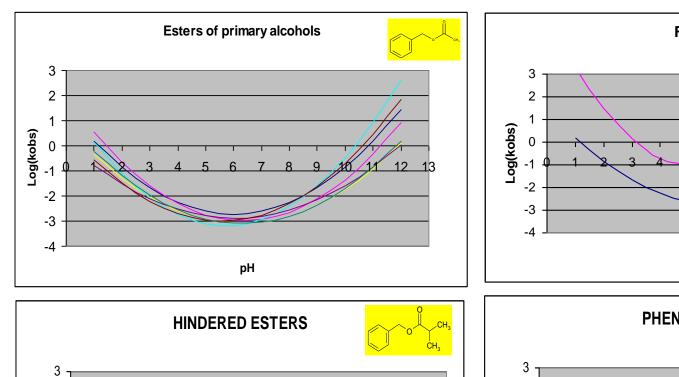
| CHEMICAL    | PRECURSOR                    | Antiperspirant | Emulsion roll-on | Hair conditioner | Shampoo | Aftershave | Si toothpaste | Non-Soap Bar | Bodyspray | CaCO toothpaste | Soap Bar |
|-------------|------------------------------|----------------|------------------|------------------|---------|------------|---------------|--------------|-----------|-----------------|----------|
| GROUP       |                              | pH 3.8         | pH3.8            | pH 3.9           | pH 4    | pH 6.1     | pH 6.3        |              | pH 7.8    | pH 8.1          | pH 10.4  |
|             |                              |                |                  |                  |         |            |               |              |           |                 |          |
| ACETATES    | Benzyl acetate               | <5%            |                  |                  |         | <5%        |               | <5%          |           |                 |          |
|             | Citronellyl acetate          | <5%            | <5%              | <5%              |         | <5%        | <5%           | <5%          | <5%       | <5%             |          |
|             | Geranyl acetate              | <5%            | <5%              | <5%              |         | <5%        | <5%           | <5%          | <5%       | <5%             |          |
|             | Eugenyl acetate              | <5%            |                  | <5%              |         | <5%        |               |              |           |                 |          |
|             | Farnesyl acetate             | <5%            |                  | <5%              |         |            | <5%           | <5%          | <5%       | <5%             |          |
|             | Linalyl acetate              | <5%            |                  |                  |         |            |               | <5%          | <5%       |                 | <5%      |
|             | Cinnamyl acetate             | <5%            | <5%              | <5%              |         | <5%        |               |              | <5%       |                 |          |
|             | Iso-eugenyl acetate          | <5%            | <5%              | <5%              |         |            |               |              |           |                 |          |
|             |                              |                |                  |                  |         |            |               |              |           |                 |          |
| OTHER       | Citronellyl formate          |                |                  |                  |         |            |               |              |           |                 |          |
| ESTERS      | Benzyl salicylate            | <5%            | <5%              | <5%              | <5%     | <5%        | <5%           | <5%          |           |                 |          |
|             | Benzyl benzoate              | <5%            | <5%              | <5%              | <5%     | <5%        | <5%           | <5%          | <5%       | <5%             |          |
|             | Cinnamyl cinnamate           | <5%            | <5%              | <5%              | <5%     | <5%        | <5%           | <5%          | <5%       | <5%             |          |
|             | Citronellyl iso valerate     | <5%            | <5%              | <5%              | <5%     | <5%        | <5%           | <5%          | <5%       | <5%             | <5%      |
|             |                              |                |                  |                  |         |            |               |              |           |                 |          |
| ACETALS     | Citral dea                   |                |                  | <5%              |         |            |               |              |           |                 |          |
|             | Alpha-amyl cinnamic ald. dma |                |                  |                  |         |            |               |              |           |                 |          |
|             |                              |                |                  |                  |         |            |               |              |           |                 |          |
| SCHIFF BASE | Aurantiol                    | <5%            |                  | <5%              |         |            |               |              |           |                 |          |
|             |                              |                |                  |                  |         |            |               |              |           |                 |          |
| ETHER       | Iso eugenol Benzyl ether     | <5%            | <5%              | <5%              | <5%     | <5%        | <5%           | <5%          | <5%       | <5%             | <5%      |
|             |                              |                |                  |                  |         |            |               |              |           |                 |          |
|             | Terpineol extra              | <5%            | <5%              | <5%              | <5%     | <5%        | <5%           | <5%          | <5%       | <5%             | <5%      |

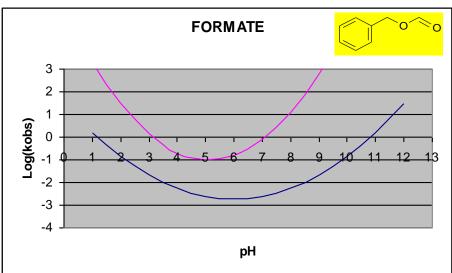


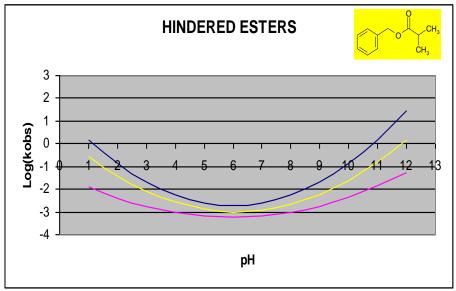
# 3. Model System Work and generation of Kinetic Constants

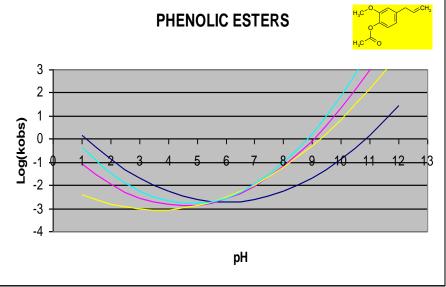
#### Experimental Design

- Hydrolysis studied in buffered Ethanol/water (70/30) media
- 5 temperature points (10°C to 60°C)
- 5 pH points (3 to 10)
- Analysis by HPLC or GC/MS


#### Results Summary: Half life of esters @ 50°C (days)

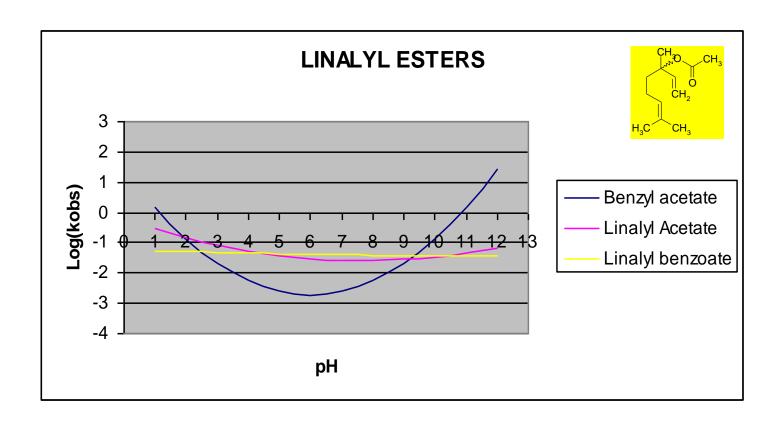

|                        | pH 3  | pH 4  | pH 5  | pH 6  | pH 7  | pH 8  | pH 9  | pH 10 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| BENZYL FORMATE         | 1     | 3     | 7     | 4     | 1     | 0     | 0     | 0     |
| BENZYL ACETATE         | 22    | 120   | 322   | 427   | 281   | 92    | 15    | 1     |
| BENZYL PROPIONATE      | 30    | 143   | 391   | 620   | 569   | 303   | 93    | 17    |
| BENZYL BUTYRATE        | 73    | 260   | 586   | 839   | 764   | 442   | 163   | 38    |
| BENZYL ISOBUTYRATE     | 403   | 752   | 1090  | 1226  | 1071  | 727   | 383   | 157   |
| BENZYL SALICYLATE      | >>365 | >>365 | 2975  | 630   | 133   | 28    | 6     | 1     |
| BENZYL BENZOATE        | > 365 | > 365 | > 365 | > 365 | > 365 | 736   | 288   | 113   |
| BENZYL PHENYL ACETATE  | 83    | 389   | 916   | 1092  | 659   | 201   | 31    | 2     |
| BENZYL TIGLATE         | > 365 | > 365 | > 365 | > 365 | > 365 | > 365 | > 365 | > 365 |
| EUGENYL ACETATE        | 239   | 476   | 493   | 266   | 74    | 11    | 1     | 0     |
| EUGENYL PHENYL ACETATE | 727   | 774   | 529   | 232   | 65    | 12    | 1     | 0     |
| ANISYL ACETATE         | 27    | 112   | 264   | 363   | 290   | 135   | 36    | 6     |
| CINNAMYL ACETATE       | 115   | 354   | 632   | 659   | 400   | 141   | 29    | 3     |
| CINNAMYL CINNAMATE     | 9377  | 7232  | 4482  | 2232  | 893   | 287   | 74    | 15    |
| CITRONELLYL ACETATE    | 65    | 243   | 573   | 842   | 774   | 445   | 160   | 36    |
| LINALYL ACETATE        | 8     | 13    | 18    | 23    | 26    | 27    | 25    | 21    |
| GERANYL ACETATE        | 89    | 234   | 423   | 523   | 442   | 255   | 101   | 27    |


= Half life > 365 days


= Half life < 365 days

#### Extrapolated Trend Lines (Esters)







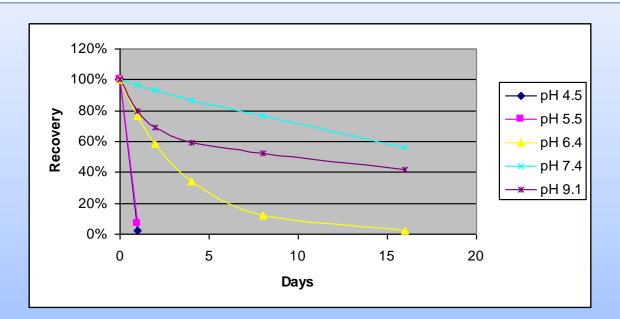



NOTE: Dark Blue line = Benzyl Acetate (reproduced on all four graphs)

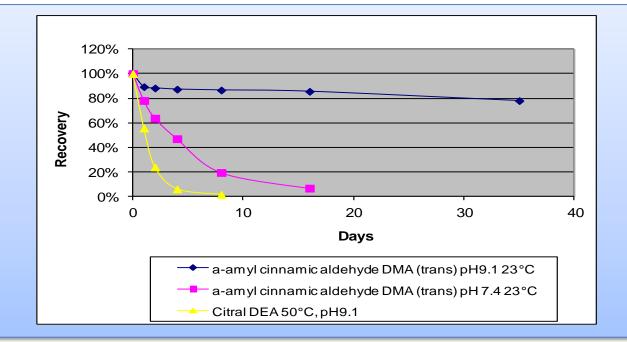
#### Extrapolated Trend Lines (Esters)



... pH less influential on the rate of hydrolysis for Linalyl esters


# Results Summary: Effect of Temperature on Ester Hydrolysis Half rates

| BENZYL ACETATE | pH 3 | pH 4 | pH 5 | pH 6 | pH 7 | pH 8 | pH 9 | pH 10 |
|----------------|------|------|------|------|------|------|------|-------|
| 10°C           | 1038 | 2257 | 3404 | 3560 | 2582 | 1299 | 453  | 110   |
| 20°C           | 602  | 1467 | 2360 | 2509 | 1761 | 817  | 250  | 51    |
| 30°C           | 265  | 779  | 1410 | 1568 | 1071 | 450  | 116  | 18    |
| 40°C           | 88   | 339  | 726  | 869  | 581  | 217  | 45   | 5     |
| 50°C           | 22   | 120  | 322  | 427  | 281  | 92   | 15   | 1     |
| 60°C           | 4    | 35   | 123  | 186  | 121  | 34   | 4    | 0     |


| LINALYL ACETATE | pH 3 | pH 4 | pH 5 | pH 6  | pH 7  | pH 8  | рН 9  | pH 10 |
|-----------------|------|------|------|-------|-------|-------|-------|-------|
| 10°C            | 2180 | 4143 | 6924 | 10173 | 13144 | 14930 | 14912 | 13096 |
| 20°C            | 349  | 736  | 1312 | 1982  | 2537  | 2751  | 2527  | 1967  |
| 30°C            | 75   | 158  | 279  | 416   | 520   | 546   | 482   | 357   |
| 40°C            | 21   | 41   | 67   | 94    | 113   | 117   | 103   | 79    |
| 50°C            | 8    | 13   | 18   | 23    | 26    | 27    | 25    | 21    |
| 60°C            | 4    | 5    | 5    | 6     | 6     | 7     | 7     | 7     |

The rate of hydrolysis approximately doubles every 10°C for most esters and every 5°C for Linalyl esters

Data on Schiff Bases:



Data on Acetals:



#### 4. Summary of Observations

Shiff bases and acetals are unstable structures that readily hydrolyse to yield aldehydes in product

Ester hydrolysis does occur in product, yielding the alcohol

Rate of Ester Hydrolysis is hugely variable and dependent upon many factors:

- # Chemistry of the acid "leaving group" (e.g., formate > acetate > cinnamate)
- # Chemistry of the alcohol group (e.g., phenolic groups > aliphatic)
- # Product matrix (e.g., pH, solubility)
- # Storage temperature

Many of the products of hydrolysis (aldehydes and alcohols) also exhibit varying degrees of instability

(i.e., maximum theoretical yield was never observed and in some cases the level peaked at an earlier time point and then declined)

No evidence for instability of Ether or Terineol

#### 5. Key Messages and Next Steps

- Need to be clear on where hydrolysis is occurring (skin vs product)
  - Evidence suggests it may not happen [quick enough] in skin
  - Clear evidence that it can happen in product
- Which are the important (higher risk) precursor materials?
  - Frequency and level of use
  - Probability/rate of hydrolysis
  - Potency of chemical produced
- Which are the important (higher risk) product matrices?
  - Is it possible to predict hydrolysis rates, in specific product matrices, from kinetic constants?
  - Are there additional parameters that may be influential?
- What additional understanding is required to support the development of proportional, evidence based Risk Management measures?
  - e.g., Precursor restrictions?
  - e.g., Consumer awareness ?