

IDEA Meeting on Pre- and Pro-haptens

Discussion on relevance of cross reactivity between fragrance hydroperoxides

Ann-Therese Karlberg

Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden

IDEA meeting October 2015

Cross reactivity

Definition:

The receptor of a memory cell for antigen 1 cannot distinguish between antigen 1 and an antigen 2 created from another hapten and will thus react also to antigen 2.

Cross reactivity

- Haptens A and B are chemically and structurally similar.
- A is metabolised to a compound similar to B.
- •B is metabolised to a compound similar to A.
- A and B are metabolised to the same compound. However,
- Small changes in structure and configuration could prevent from cross reactivity.

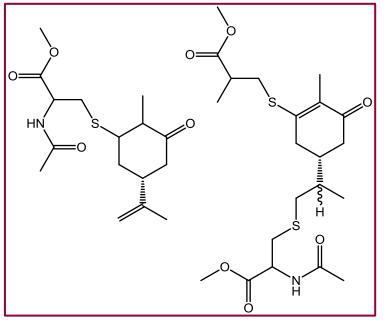
Cross reactivity

- True cross reactivity studies must be performed experimentally under controlled exposure conditions.
- So far the most reliable are guinea pig studies
 - -Live animals
 - -Both induction and elicitation
 - -No concomitant exposure

Clinical studies can only give indications since no control of the exposure

Cross reactivity studies of terpene hydroperoxides

Haptens formed outside skin by abiotic oxidation


The primary oxidation products

UNIVERSITY OF GOTHENBURG

Specific immunogens are formed between terpene–OOH and amino acids

- Involvement of carbon centered, alkoxy, and peroxyl radicals has been demonstrated with radical trappers
- Investigations with peptides and nucleophiles show specific complex formation with limonene-2-OOH
- Presence of iron complexes necessary (Fe(II)/Fe(III))

Identified adducts from reaction mixture with Lim-2-OOH, FE(III)TPPCI and NAc-Cys-OMe *

Lepoittevin J-P, Karlberg A-T. Chem Res Toxicol 1994: 7: 130-133 Johansson S, et al. Chem Res Toxicol 2008: 21: 1536-1547 *Johansson S, et al. Chem Res Toxicol 2009: 22: 1774-1781

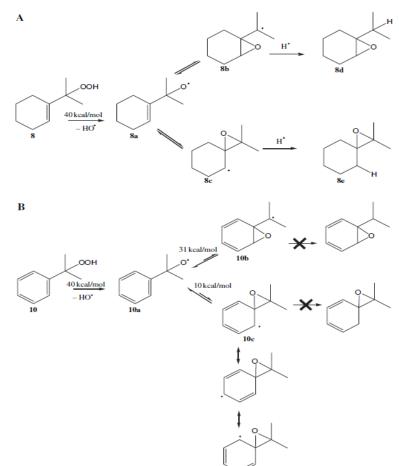
Redeby T, et al. Chem Res Toxicol 2010: 23: 203-210 Kao D, et al. J. Org. Chem. 2011: 76: 6188–6200 Kao D, et al. Toxicol. Res., 2014: 3: 278-289

Cross reactivity studies of terpene hydroperoxides in guinea pigs

- No general cross reactivity found
- Specific cross-reactivity pattern demonstrated
- Cross reactivity when overall structural similarity

Positive reaction at challenge testing in guinea pigs

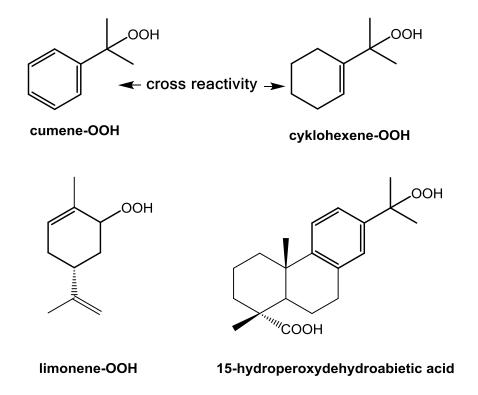
Cross reactivity pattern in guinea pigs


Induction compounds:	Challenge compound 1	Challenge compound 2	Challenge compound 3	Challenge compound 4
	Cumene-OOH	Limonene-2- OOH	Cyclohexene- ООН	15-Hydroperoxy dehydroabietic acid
<u>Group A</u> Cumene-OOH	pos	neg	pos	neg
<u>Group B</u> Limonene-2- OOH	neg	pos	neg	NT

*Bråred Christensson et al. Contact Dermatitis 2006: 55: 230–237

Cross reactivity pattern

Supported by determination of the formation energies of the intermediary radicals.


Bråred-Christensson J. et al. Contact Dermatitis 2006: 55: 230-237

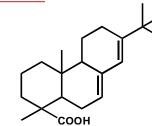
Cross reactivity pattern

Thus!

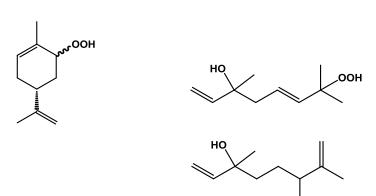
Cross reactivity due to structural similarity in accordance with what is seen for other haptens.

due to hydroperoxide was seen

No unspecific 'cross reactivity'


Bråred-Christensson J. et al. Contact Dermatitis 2006: 55: 230-237

Cross reactivity studies of terpene hydroperoxides in allergic individuals


29 individuals allergic to colophony tested with:

 15-Hydroperoxyabietic acid (important hapten in colophony)

Limonene-2-hydroperoxide

✓Linaloolhydroperoxides

OOH

Bråred-Christensson J. et al. Contact Dermatitis 2006: 55: 230-237

ÒОН

Cross reactivity studies of terpene hydroperoxides in allergic individuals

No unspecific 'cross reactivity' due to hydroperoxide was seen

✓28/29 individuals reacted to colophony at retesting

✓13/29 (36%): colophony + 15-hydroperoxyabietic acid (15HPA)

✓1/29: colophony, 15HPA + limonene-2-OOH

✓1/29: colophony + limonene-2-OOH

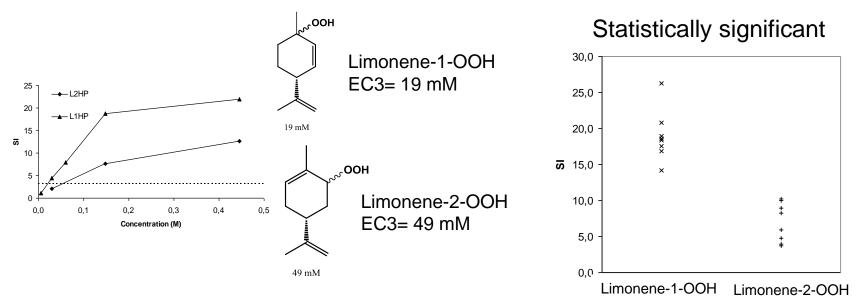
✓1/29: colophony + linalool-OOH

✓Nobody reacted to both limonene-2-OOH and linalool-OOH

✓Nobody reacted to all three tested hydroperoxides

Bråred-Christensson J. et al. Contact Dermatitis 2006: 55: 230-237

Observe


1/29 reacted to linalool-OOH = 3.4%2/29 reacted to limonene-2-OOH = 6.9%

Screening in consecutive patients: Pos to oxidized linalool (6.9%) Pos to oxidized limonene (5.2%).

Limonene-1-OOH and Limonene -2-OOH In the LLNA

The limonene hydroperoxides differ in sensitizing potency in LLNA

Bråred Christensson et al. Contact Dermatitis: 2008:59:344-52.

Limonene-1-OOH and Limonene -2-OOH Small clinical study:

7 patients allergic to ox. limonene were patch tested with Lim-1-OOH and Lim-2-OOH

Results: •7/7 reacted to Lim-1-OOH •3/7 reacted to Lim-2-OOH

Lim-1-OOH stronger allergen
in LLNA

more positive patch test reactions in limonene-allergic patients

Bråred Christensson et al. Contact Dermatitis: 2008:59:344-52.

Limonene-1-OOH and Limonene -2-OOH Enlarged clinical study:

Testing in 763 consecutive patients

Reactions to	Also reactions to Ox. R-lim.	Also reactions to Lim-1-OOH	Also reactions to Lim-2-OOH	No pos reactions to other limonene markers
Ox. R-lim. (3%)*	9 (total)	6	4	2
Lim-1-OOH (0.5%)	6	18 (total)	8	7
Lim-2-OOH (0.5%)	4	8	13 (total)	4

*Content of Lim-1-OOH 0.0003% and of Lim-2-OOH 0.002%

Bråred Christensson J et al Contact Dermatitis 2014:70:291-99

Recent big multicenter studies – what do they say?

Unspecific 'cross reactivity' due to hydroperoxide?

Please observe!

The clinical studies - on oxidized limonene or oxidized linalool

✓ <u>Mixtures of</u>:

- ✓ Non-oxidized parent compounds
- ✓ Primary oxidation products
- ✓ Secondary oxidation products
- ✓ Dimers?

International multicentre study

- •2900 consecutive patients tested with ox. limonene and ox. linalool
- 2619/2900 did not react to the ox. terpenes
- •25% (71/281) of pos. patients reacted to both ox. limonene and ox. linalool
- •75% (71/281) reacted only to one of them

Bråred Christensson J et al. Submitted

Multicentre study in the U.K.

4731 consecutive patients tested with ox. limonene* and ox. linalool

26% (107/411) of positive patients reacted to both ox. linalool and ox. limonene

74% reacted only to one of the preparations

*The Chemotechnique preparations named "Hydroperoxides of limonene" and "Hydroperoxides of linalool" are the same as used in the studies by Bråred Christensson J et al.

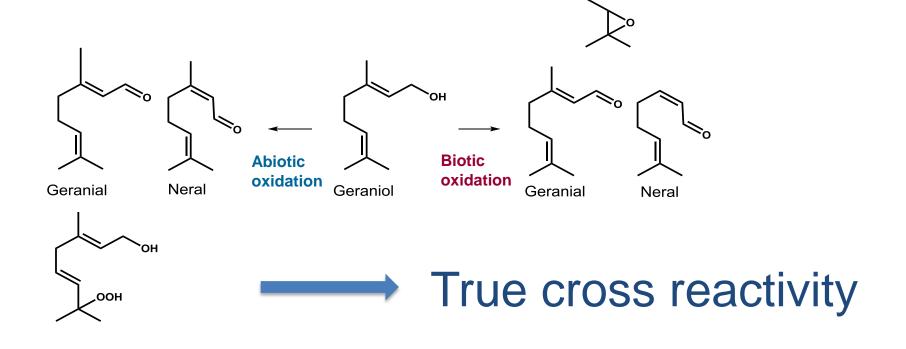
Audrian et al. British Journal of Dermatology 2014: 171: 292–297

In contrast:

High frequency of concomitant reactions to citral and geraniol

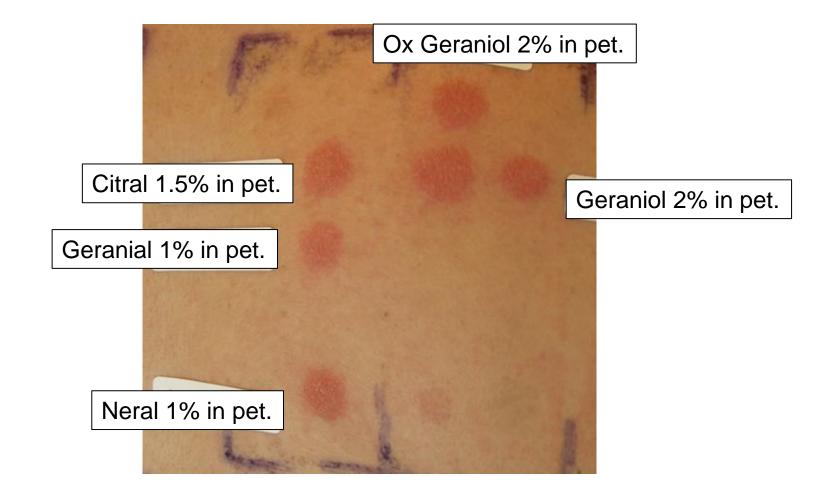
German multicentre study

2021 patients patch tested with both geraniol and citral


83.3% of citral-allergic patients reacted also to geraniol

Citral = Geranial + Neral (2: 1)

Schnuch et al. Contact Dermatitis 2007:57;1-10



Geranial and neral are formed by oxidation of geraniol

1. Hagvall et. al. Chem Res Toxicol. **2007**, *20*, 807-814 2. Hagvall et. al. Toxicol Appl Pharm. **2008**, *233*, 308-313

Hagvall L. et al. Contact Dermatitis 2012:**67**: 20–27 Hagvall L and Bråred Christensson J Contact Dermatitis 2014:**71**:280–288

IDEA meeting October 2015

www.gu.se

ox. linalool and ox. limonene

25% (71/281) and **26%** (107/411) in the multicentre studies reacted to both ox. linalool and ox. limonene

- Is this due to mixed exposure?

Limonene and linalool are the most commonly used fragrance compounds - often used together "tandem exposure"

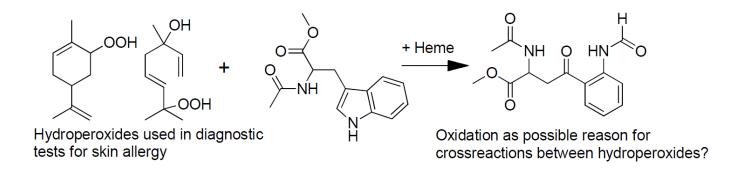
- Or is this due to unspecific 'cross reactivity' in clinical practice?

Unspecific 'cross reactivity' due to hydroperoxide?

Natsch et al.:

"One possibility is that patch test to different terpene hydroperoxides do not only reveal a hapten-specific sensitization but rather a reactive state to other or multiple oxidizing agents."

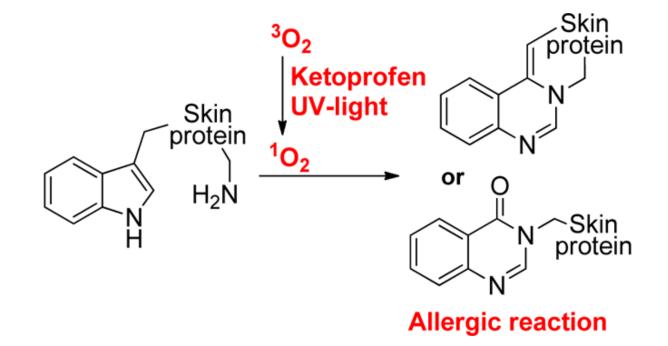
Chem Res Toxicol May 2015

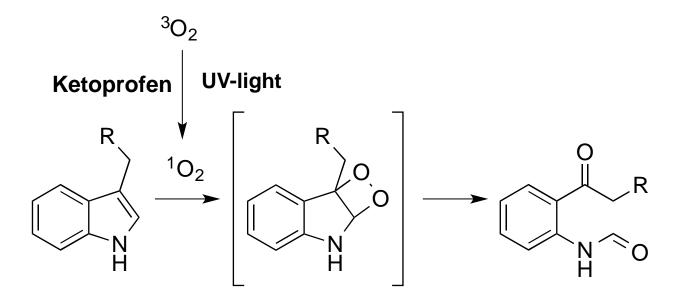

Oxidative Tryptophan modification by terpene- and squalenehydroperoxides and a possible link to cross-reactions in diagnostic tests

Andreas Natsch, Roger Emter, Remo Badertscher, Gerhard Brunner, Thierry Granier, Susanne Kern, and Graham Ellis

Chem. Res. Toxicol., Just Accepted Manuscript • DOI: 10.1021/acs.chemrestox.5b00039 • Publication Date (Web): 05 May 2015

Hypothetically:


Table of content graphic


Ketoprofen-Induced Formation of Amino Acid Photoadducts: Possible Explanation for Photocontact Allergy to Ketoprofen.

Isabella Karlsson, Elin Persson, Andreas Ekebergh, Jerker Mårtensson, Anna Börje Chem Res Toxicol 2014: 27: 1294–1303

Mechanism for photooxidation of Trp induced by ketoprofen – type II photooxidation (formation of singlet oxygen)

N-formylkynurenine

Isabella Karlsson et al. Ketoprofen-Induced Formation of Amino Acid Photoadducts: Possible Explanation for Photocontact Allergy to Ketoprofen. *Chem Res Toxicol* 2014: 27: 1294–1303

UNIVERSITY OF GOTHENBURG

Karlsson et al

- **Ketoprofen** acts via the formation of singlet oxygen in a photooxidation process
- Mainly photo allergy, contact allergy rare
- No ketoprofen adducts were found but large amounts of tryptophan- lysine adduct
- 50 % of N-acetyl-O-methyl-Trp was oxidized after 15 min in presence of ketoprofen (1 equiv.), UV-radiation and lysine.
- 60 % of the Trp analog (Me-Indole) was oxidized after 10 min in presence of ketoprofen (1 equiv.) and UV-radiation.

50% of Trp analog transformed to N-formylkynurenine /kynurenine.

 25% of the Trp analog (Me-Indole) was oxidized after 30 min in presence of UVradiation only.

20% of Trp analog turned into N-formylkynurenine /kynurenine

Natsch et al.

- **Terpene hydroperoxides** act via a radical mechanism, UV-radiation not needed
- Contact allergy commonly seen
- Earlier studies show formation of specific peptide adducts with terpenehydroperoxide
- No experiments including other amino acids in the present study
- 50 % of N-acetyl-O-methyl-Trp was oxidized after 24 h in presence of hydroperoxides (10 equiv.) and heme.

5% of Trp transformed to

- N- formylkynurenine (major compound formed)
- No experiment with only UV-radiation

Comments

- Different mechanisms for ketoprofen and the terpene hydroperoxides
- Photo allergy not the main issue with fragrance terpenes and oxidized fragrance terpenes
- Tryptophan is easily oxidized by other agens.

Conclusions

True cross reactivity exists due to:

✓ Close strucural similarity (guinea pig studies)

 Formation of the same haptens by bioactivation or abiotic activation (geraniol, citral)

No unspecific 'cross reactivity' is seen:

- In cross reactivity studies in guinea pigs
- In directed clinical studies on specific hydroperoxides (abietic acid-OOH, Lim-OOH, Lin-OOH)
- In big screening studies with oxidized terpenes (75% reacted only to one of the tested compounds)

No theoretical explanation for unspecific 'cross reactivity' demonstrated.
 Instead massive simultaneous exposure to fragrance terpenes