

In silico predicting of pre- and pro- electrophilic activation in the SS assessment Simulating metabolic pathways through QSAR/SAR

Laboratory of Mathematical Chemistry, Bourgas 2015

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

TIMES Skin Sensitization model Short description

TIMES-SS model includes:

- Application of Autoxidation simulator
- Simulation of Skin metabolism
- Specific molecular transformations describing the covalent interactions with proteins
- Mechanistic justification of the protein binding mechanism
- Accounting model applicability domain

Predicting skin sensitization in TIMES

TIMES-SS Predicted metabolism of Isoeugenol accounting AU and SM activation

Generated metabolic map. Activated metabolites are highlighted

Quantitative assessment of generated metabolites

Quantitative assessment of generated metabolites

Quantitative assessment of generated metabolites

Local Training Sets of alerts

Alert Performance

Mechanistic justification

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

Alert reliability is assessed by:

- ✓ Alert performance it is defined as the ratio between the number of correctly classified chemicals vs. the total number of chemicals within the alert training set
- ✓ Number of chemicals in the alert training set is also used as a criteria for reliability (current threshold is set to five chemicals)

Alert reliability - adopted thresholds

Based on their performance protein binding alerts have been classified as having:

- ✓ **High** reliability (perf. \ge 60% and n \ge 5)
- ✓ Low reliability (perf. $\le 60\%$ and $n \ge 5$)
- ✓ **Undetermined** reliability (1< n <5)
- ✓ **Undetermined theoretical** reliability (no support by exp. data)

Alert reliability

- Protein binding alerts in TIMES-SS model have been reviewed by Dr. David Roberts
- \checkmark The following improvement have been reached:

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

Improving of (a)biotic pathways – current work

- Under a joint initiative of **RIFM** and **LMC** with participation of **Dr. David Roberts** as reviewing expert, curation of transformations leading to generation of protein binding alerts has been undertaken.
- All (a)biotic transformations that leads to generation of protein binding alerts are reviewed by Dr. D.Roberts and all modifications are currently implemented into the TIMES-SS model.

• Hydroperoxides

Metabolic path		Input from D. Roberts	Result
Before modifications	423 Automotion	Phenolic ortho OH group probably acts as an antioxidant, so rather than forming the benzylic radical (first stage in formation of the hydroperoxide) it forms the phenolic radical by abstraction of H from the OH group. This phenolic radical does not have a simple path to an electrophilic species, so the chemical is Non sensitizer.	

• Hydroperoxides

Metabolic path	Input from D. Roberts	Result
Before modifications Image: Comparison of the second sec	Phenolic ortho OH group probably acts as an antioxidant, so rather than forming the benzylic radical (first stage in formation of the hydroperoxide) it forms the phenolic radical by abstraction of H from the OH group. This phenolic radical does not have a simple path to an electrophilic species, so the chemical is Non sensitizer. LMC action: Addition of a mask (phenolic ortho OH) that prevents the benzylic hydroperoxide formation.	

• Hydroperoxides

After modifications $f_{i} = f_{i}$ $f_{i} = f_{i}$	Metabolic path	Input from D. Roberts	Result
$ \int_{-\frac{1}{2}} \int_$	$\begin{array}{c} \text{After modifications} \\ \hline \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	Input from D. RobertsPhenolic ortho OH group probably acts as an antioxidant, so rather than forming the benzylic radical (first stage in formation of the hydroperoxide) it forms the phenolic radical by abstraction of H from the OH group. This phenolic radical does not have a simple path to an electrophilic species, so the chemical is Non sensitizer.LMC action: Addition of a mask (phenolic ortho OH) that prevents the benzylic hydroperoxide formation.	Correctly predicted as Non sensitizer – no autoxidation products are generated.

• Quinones

	Metab	olic path		Input from D. Roberts	Result
Before modific 423. Autoxidation 423. t^{2}	Autoxidation	292. N-Acetylation	423. Autoxidation $\downarrow^{r_{2}} = \downarrow^{r_{2}}$ $\downarrow^{r_{2}}$	This chemistry is unlikely. Compound has a repeatable EC3, and probably does not sensitize via the hydroperoxide shown. It is most susceptible to oxidation (enzymatic or abiotic) by attack at the carbon ortho to both NH2 groups, or at a carbon para to one and ortho to the other, resulting in a highly electrophilic quinone-imine as the ultimate sensitizer.	

• Quinones

Metabolic path		Input from D. Roberts	Result
<image/> <equation-block></equation-block>	423. Autoxidation $\downarrow^{r_{1}} \qquad $	This chemistry is unlikely. Compound has a repeatable EC3, and probably does not sensitize via the hydroperoxide shown. It is most susceptible to oxidation (enzymatic or abiotic) by attack at the carbon ortho to both NH2 groups, or at a carbon para to one and ortho to the other, resulting in a highly electrophilic quinone-imine as the ultimate sensitizer. LMC action: Addition of spontaneous conversion of hydroperoxide to quinone imine in order to prevent the interaction with proteins of the intermediate hydroperoxide. Generation of an additional para quinone imine.	

• Quinones

Metabolic path	Input from D. Roberts	Result
After modifications $h_{2}^{2} \downarrow_{-} h_{2}^{2}$ 423 Autostation $h_{2}^{2} \downarrow_{-} h_{2}^{2}$ 423 Autostation $h_{2}^{2} \downarrow_{-} h_{1}^{2}$ $h_{2}^{2} \downarrow_{-} h_{1}^{2}$ $h_{2}^{2} \downarrow_{-} h_{1}^{2}$ $h_{2}^{2} \downarrow_{-} h_{1}^{2}$ $h_{2}^{2} \downarrow_{-} h_{2}^{2}$ $h_{1}^{2} \downarrow_{-} h_{2}^{2}$ $h_{2}^{2} \downarrow_{-} h_{2}^{2} \downarrow_{-} h_{2}^{2}$ $h_{2}^{2} \downarrow_{-} h_{2}^{2} \downarrow_{-}$	This chemistry is unlikely. Compound has a repeatable EC3, and probably does not sensitize via the hydroperoxide shown. It is most susceptible to oxidation (enzymatic or abiotic) by attack at the carbon ortho to both NH2 groups, or at a carbon para to one and ortho to the other, resulting in a highly electrophilic quinone-imine as the ultimate sensitizer.	Autoxidation products are more scientifically reliable.
$ \begin{array}{c c} W_{2}^{*} & W_{2}^{*} & W_{2}^{*} \\ \downarrow \\ \downarrow \\ F_{F} \end{array} \end{array} \qquad \begin{array}{c c} W_{2}^{*} & W_{2}^{*} \\ \downarrow \\ \downarrow \\ H^{*} \end{array} \end{array} \qquad \begin{array}{c c} W_{2}^{*} & W_{2}^{*} \\ \downarrow \\ W_{2}^{*} \end{array} \end{array} \qquad \begin{array}{c c} W_{2}^{*} & W_{2}^{*} \\ \downarrow \\ W_{2}^{*} \end{array} \end{array}$	LMC action: Addition of spontaneous conversion of hydroperoxide to quinone imine in order to prevent the interaction with proteins of the intermediate hydroperoxide. Generation of an additional para quinone imine.	

Modifications addressing the biotic (pro-electrophilic) activation of chemicals

• It has been found that skin sensitization potential is reduced if the chemicals are activated by consecutive transformation steps. This is probably due to participation of more than one enzymes catalyzing each of the consecutive transformations.

Modifications addressing the biotic (pro-electrophilic) activation of chemicals

• Examples of pro-electrophilic activation to ortho-quinones

* WS – Weak sensitizers; SS – Strong sensitizers

Modifications addressing the biotic (pro-electrophilic) activation of chemicals

• Experimental support

2D fragment	Number of observed*			Note
	NS	WS	SS	
R' = OH or OC	3	3	3	Chemicals requiring consecutive steps of activation
R'' = OH	2	1	31	Chemicals requiring one step of activation

* NS - Non sensitizers; WS - Weak sensitizers; SS - Strong sensitizers

- It has been found that skin sensitization potential is reduced if the chemicals are activated by consecutive transformation steps. This is probably due to participation of more than one enzymes catalyzing each of the consecutive transformations.
- This relation was used to discriminate the observed skin sensitization effect of **Isoeugenol** (obs. *Strong sensitizer*) and **Eugenol** (obs. *Weak sensitizer*)

Recent initiatives of TIMES-SS model upgrade

TIMES-SS Predicted metabolism of *Isoeugenol* and *Eugenol*

Isoeugenol

- Autoxidation to quinone methide
- Biotic oxidation to quinone methide (single step activation)
- Biotic dealkylation and subsequent oxidation (consecutive steps of activation)

Eugenol

30 Biotic dealkylation; subsequent oxidation (and/or tautomerism) (consecutive steps of activation)

Recent initiatives of improving TIMES-SS model Potential metabolism of *Isoeugenol* and *Eugenol*

Simulation of metabolism is in agreement with cited in the literature enzymatic metabolism of Isoeugenol and Eugenol*

*Camilla K. Smith and Sharon A.M. Hotchkiss, Allergic Contact Dermatitis: Chemical and Metabolic Mechanisms, 2001, CRC Press, London (Taylor&Francis)

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

- Dealkylation
- Oxidative deamination
- Azo-reduction

. . . .

boratory of Mathematical Chemist

• Dealkylation – Example

۲

- Dealkylation
- Oxidative deamination Example

- Dealkylation
- Oxidative deamination
- Azo-reduction Example

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

Addition of kinetic experimental data for clearance

- The aims under this initiative are:
 - ✓ To build a database with observed metabolic pathways in skin including different enzymatic parameters.
 - ✓ To improve skin metabolism simulator by using experimental data for clearance.
 - \checkmark Currently data for clearance has been found for 150 chemicals.

Outlook

- TIMES-SS model (reminder from last presentation)
- Recent initiatives of improving TIMES-SS model
 - ✓ Alert reliability
 - \checkmark (a)biotic activation pathways
- The role of pro-electrophilic activation
- Addition of kinetic experimental data for clearance
- Summary

Summary

- TIMES-SS model for predicting skin sensitization effect accounting for (a)biotic activation of chemicals was demonstrated
- TIMES-SS model provides qualitative and quantitative distribution of generated metabolites
- Curation of the model has been illustrated by:
 - ✓ Improving alert reliabilities
 - ✓ Adjusting (a)biotic activation pathways
 - ✓ Using kinetic data

LMC team working on Skin sensitization endpoint

Gergana

Chanita Kuseva

Aycel Mehmed

Stefan Kotov

Stoeva

Hristiana Ivanova

Poryazova

Ovanes Mekenyan, Head of LMC

Saby Dimitrov, Deputy Head of LMC

LMC partners involved in the improvement of TIMES-SS

Anne Marie Api

Vice President, Human Health Sciences of RIFM

David Roberts

Toxicological Chemistry Consultant

Thank you.

More information for LMC scientific activities and projects you could find visiting our web site here:

http://oasis-lmc.org/

Laboratory of Mathematical Chemistry

Research at LMC focuses on mathematical methods for predicting foxicity of chemicals and modeling of metabolism. LMC is a leader in software development for (eco)toxicity assessment and chemical databasing.