# HP analytical task force meeting

12.12.16



### Agenda

- 1. First ring trial: Decision on journal for re-submission
- 2. Analysis in complex products: Review method development
- 3. Extrelut method experience
- 4. Stability in product bases for ring test
- 5. Extraction method for LC-MS analysis
- 6. Set-up and timing ring test
- 7. Discussion: Contract lab or taskforce for routine analysis
- 8. Discussion: Best approach to test market samples, aged products and patientssamples
- 9. Discussion: What products to test in a market overview / samples from consumers and patients
- **10.** Review tomorrows presentation

# Re-submission paper

- 1. Three options
- 2. A) Journal of Analytical Toxicology

3. B) Flavour and Fargrance journal

4. C) Contact Dermatitis

### Review method development: Analysis in complex bases

- Three standard bases distributed to all labs
- Spiking performed by individual labs
- Different methods tested by different labs
- LC-MS: Difficulty for ion dupression
  - Best method proposed By Michael Calandras's Lab
- GC-MS: Different dilute and shoot methods tested
- Extrelut extraction method adapted from allergen detection work
  - Appears to give best recoveries
  - Below results on repeated tests are summarized

# Givaudan Method 3 – Extrelut adsorption with MTBE extraction - previous data

- Less hydrophobic solvent combined with Extrelut
- No longer loss of Linalool-OH
- Good recovery > 80% for all four isomers
- Experiment so far only conducted once on one creme / one spike level
- Needs to be repeated on all samples

|                      |               | trans-      |         |          |          |
|----------------------|---------------|-------------|---------|----------|----------|
|                      |               | Limonene-1- | trans-  | 7-OH-    | 6-OH-    |
|                      |               | ОН          | Carveol | Linalool | Linalool |
| Creme 1 + 200 ppm HP | MTBE          | 96          | 94      | 83       | 89       |
| Creme 1 + 200 ppm HP | Extrelut afte | 20          | 20      | 23       | 22       |
| Creme 1 + 200 ppm HP | Pentane       | 88          | 85      | 8        | 13       |
| Creme 1 + 200 ppm HP | Extrelut afte | 31          | 29      | 80       | 74       |

# Extrelut adsorption with MTBE extraction

- All samples of the method development study were tested now
- Overall 80 95% recovery

|                                     | trans-Limonene-1-OH |            | trans-Carveol |            |
|-------------------------------------|---------------------|------------|---------------|------------|
|                                     | ppm                 | % recovery | ppm           | % recovery |
| 7) Creme 1 + 0 ppm HP               | NF                  |            | NF            |            |
| 8) Creme 1 + 50 ppm HP              | 44.5                | 89.0       | 46.3          | 92.6       |
| 9) Creme 1 + 200 ppm HP             | 172.8               | 86.4       | 189.1         | 94.5       |
| 10) Creme 2 + 0 ppm HP              | NF                  |            | NF            |            |
| 11) Creme 2 + 50 ppm HP             | 46.9                | 93.8       | 55.3          | 110.6      |
| 12) Creme 2 + 200 ppm HP            | 192.9               | 96.4       | 214.4         | 107.2      |
| 13) Deodorant liquid 3 + 0 ppm HP   | NF                  |            | NF            |            |
| 14) Deodorant liquid 3 + 50 ppm HP  | 41.4                | 82.9       | 40.3          | 80.5       |
| 15) Deodorant liquid 3 + 200 ppm HP | 168.6               | 84.3       | 145.0         | 72.5       |
| Average                             |                     | 88.8       |               | 93.0       |

# Extrelut adsorption with MTBE extraction (II)

- All samples of the method development study were tested now
- Overall 80 95% recovery

|                                     | 7-OH-Linalool |            | 6-OH-Linalool |            |
|-------------------------------------|---------------|------------|---------------|------------|
|                                     | ppm           | % recovery | ppm           | % recovery |
| 7) Creme 1 + 0 ppm HP               | NF            |            | NF            |            |
| 8) Creme 1 + 50 ppm HP              | 40.2          | 80.4       | 40.8          | 81.7       |
| 9) Creme 1 + 200 ppm HP             | 174.6         | 87.3       | 154.8         | 77.4       |
| 10) Creme 2 + 0 ppm HP              | NF            |            | NF            |            |
| 11) Creme 2 + 50 ppm HP             | 51.2          | 102.4      | 41.3          | 82.6       |
| 12) Creme 2 + 200 ppm HP            | 196.0         | 98.0       | 155.6         | 77.8       |
| 13) Deodorant liquid 3 + 0 ppm HP   | NF            |            | NF            |            |
| 14) Deodorant liquid 3 + 50 ppm HP  | 46.8          | 93.6       | 39.2          | 78.4       |
| 15) Deodorant liquid 3 + 200 ppm HP | 191.8         | 95.9       | 160.4         | 80.2       |
| Average                             |               | 92.9       |               | 79.7       |

### Extrelut analysis repeated: Stability in samples over time

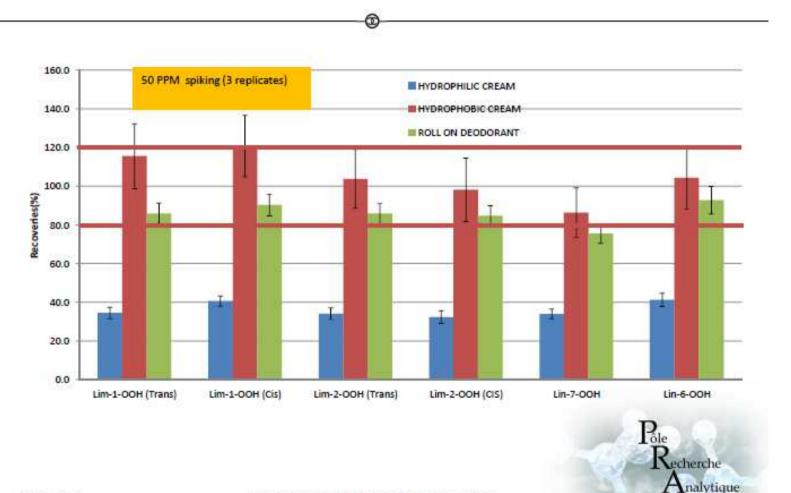
- Different consumer bases spiked with 100 ppm
- Again good recovery with Extrelut method
- No loss over 28 days in fridge for these 5 products
- No Background hydroperoxide signal detected in these five products

| % recovery of 100 ppm | trans-Lim | onene-1-OH | trans-Carveol |           |  |
|-----------------------|-----------|------------|---------------|-----------|--|
| spike                 | T=24 h    | T=28 days  | T=24 h        | T=28 days |  |
| Woolwax Alcohol Creme | 107.3     | 108.6      | 106.6         | 111.7     |  |
| Deodorant Base        | 95.2      | 100.7      | 83.7          | 85.8      |  |
| Bodylotion'           | 108.5     | 99.6       | 94.1          | 88.4      |  |
| Anti ageing cream'    | 85.0      | 82.0       | 96.5          | 90.8      |  |
| Lotion II             | 110.2     | 106.5      | 87.7          | 84.9      |  |
| Average               | 101.3     | 99.5       | 93.7          | 92.3      |  |

### Extrelut adsorption with MTBE extraction

- Slightly too high recovery for Linalool-7-OH
- Howver also for Linalool-OH isomers stable recoveries over time
- All analysis done by single sample, no triplicates done
- No Background hydroperoxide signal detected in these five products

| % recovery of 100 ppm | 7-OH-Lir | nalool    | 6-OH-Linalool |           |
|-----------------------|----------|-----------|---------------|-----------|
| spike                 | T=24 h   | T=28 days | T=24 h        | T=28 days |
| Woolwax Alcohol Creme | 124.7    | 110.6     | 113.1         | 108.3     |
| Deodorant Base        | 114.4    | 112.8     | 111.2         | 109.4     |
| Bodylotion'           | 119.0    | 115.5     | 81.2          | 78.8      |
| Anti ageing cream'    | 126.6    | 104.5     | 85.7          | 80.7      |
| Lotion II             | 120.0    | 116.8     | 128.4         | 111.7     |
| Average               | 121.0    | 112.0     | 103.9         | 97.8      |


#### Commercial Deo base: 'All natural deodorant'

- Deodorant based on all-natural ingredients, containing Linalool and Limonene
- Low background level of Linalool-hydroperoxide detected verified by both HR-LC-MS annd GC-MS- reduction

|                                     | trans-Limonene-1-OH |           | trans-Carveol |           |
|-------------------------------------|---------------------|-----------|---------------|-----------|
|                                     | T=24 h              | T=28 days | T=24 h        | T=28 days |
| All natural deo -unspiked           | NF                  | NF        | NF            | NF        |
| All natural deo -spiked, % recovery | 101.9               | 104.0     | 92.8          | 98.1      |
|                                     | 7-OH-Linalool       |           | 6-OH-Linalool |           |
|                                     | T=24 h              | T=28 days | T=24 h        | T=28 days |
|                                     |                     |           | NF (to be     |           |
| All natural deo -not spiked, ppm    | 29.7                | 28.2      | rechecked)    | 27.2      |
| All natural deo -spiked, ppm        | 147.5               | 152.7     | 128.2         | 152.4     |
| All natural deo -spiked, % recovery | 117.8               | 124.6     | 128.2         | 125.2     |

## Extrelut method: Experience Chanel

- Good recovery found by CHANEL for hydrophobic cream and deodorant base
- Poor recovery for hydrophilic cream
  - Degradation of spiked level within 24 h?



# Extrelut method: Experience other Labs?

• TBD

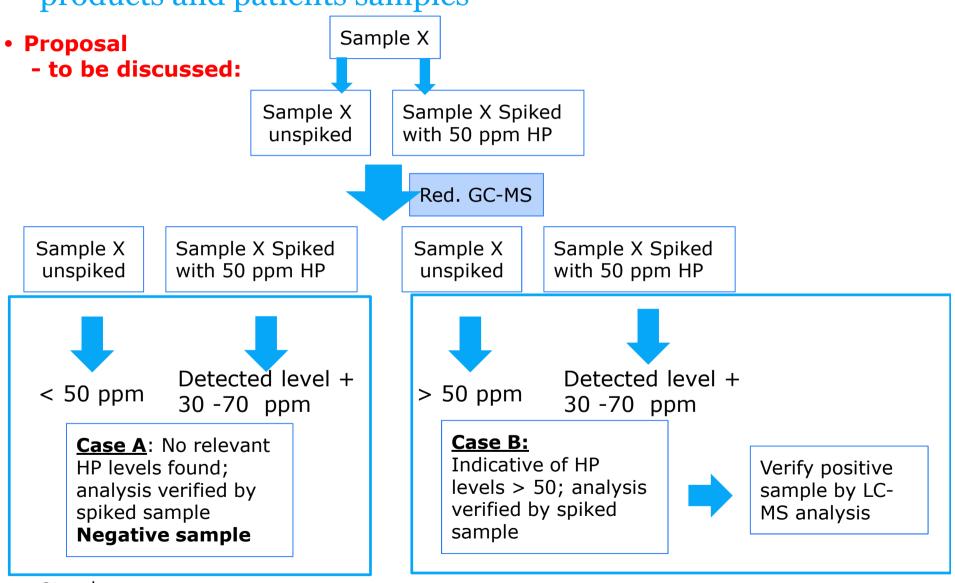
#### Conclusions: Extrelut – Reduction- GC-MS method

- Reduction method efficiently reduces HP in all bases tested
  - Divergent results Givaudan / CHANEL for hydrophilic cream
- Recovery of formed alcohols from the different bases close to 100%
- GC-MS coupled to reduction and extrelut extraction method is sensitive enough to quantify in complex bases at 50 ppm
- Hydroperoxides appear stable in the bases used in fridge, so stability should no be an issue for ring study
- Note: Theoretically hydroperoxides could decay into the alcohols in the bases
  this we cannot see from these results
- To test this possibility, same analysis was done with LC-MS
- 28 days samples are analyzed this week we will report if this generates a different result, (i.e. Loss of HP in 28 days samples vs 24 h samples if analyzed with LC-MS)

# Extraction for LC-MS analysis

- Results Mike
- Method Mike

### Set-up and timing ring test


- Who will participate?
  - Integrate a commercial CRO ?- see below
- How many product bases
- How many replicate samples per test sample to be analysed
- Set-up as last time low and high ranges as before?

| Base 1      | Base 1, low level                 | Base 1, high level                                                                                                                                      |
|-------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tiot Spined | Limonenen-1-00H, Limonenen-2-00H, | Spiked with different levels of Limonenen-<br>1-00H, Limonenen-2-00H, Linalool-6-<br>00H, Linalool-7-00H in the range of <b>100</b><br>– <b>200 ppm</b> |
| Base 2,     | Base 2, low level                 | Base 2, high level                                                                                                                                      |
| Tiot spined | Limonenen-1-00H, Limonenen-2-00H, | Spiked with different levels of Limonenen-<br>1-00H, Limonenen-2-00H, Linalool-6-<br>00H, Linalool-7-00H in the range of <b>100</b><br>- <b>200</b> ppm |

### Discussion: Contract lab or taskforce for routine analysis

- Based on the method development work, we expect next ring trial to be a success
- We will then be ready to routinely test 'real' samples
- Who will perform this analysis?
  - The labs of the taskforce with a mandate from IFRA
  - An external CRO?
  - In the later case we must make sure, that the external lab is validated as we are now and performs equally well
  - In this case the external lab should already participate in next ring trial!

# Discussion: Best approach to test market samples, aged products and patients samples



Givaudan

# Discussion: What products to test in a market overview / samples from consumers and patients

- Detection in final consumer products
  - Detection in general market products
  - Detection in aged consumer samples
    - ⇒ Presence of potentially sensitizing doses above levels considered safe by QRA?
  - Detection in products brought in by patients
    - ⇒ Presence of potentially elicitating doses which may indicate relevance of reaction to actual disease?
- How is such a study organized, and who will perform analysis?

# Thank you

Contact

