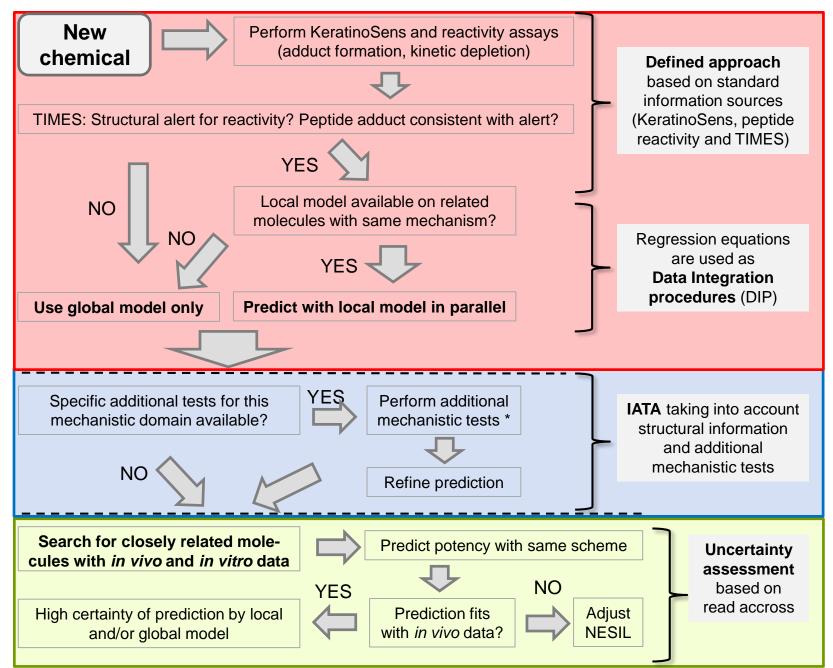
Deriving a no expected sensitization induction level for fragrance ingredients without animal testing: An integrated approach applied to specific case studies

Andreas Natsch

16.5.2018

engage your senses

1. Defined approach (DA) + Data Interpretation procedure (DIP)

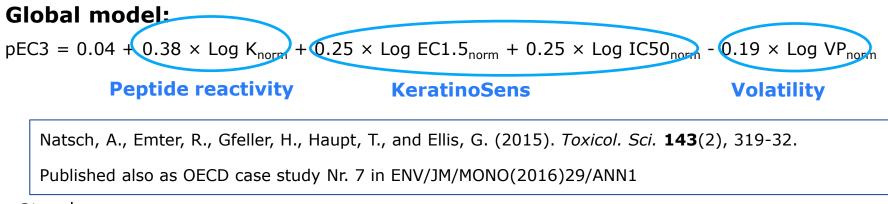

- 1. Potency based on kinetic peptide reactivity and quantitative KeratinoSens data and Regression models
- 2. Domain and global assessments
- 3. IATA: Targeted additional testing
- 4. Uncertainty assessment
- 5. Adjustment of NESIL based on uncertainty assessment
- 6. Types of case studies
- 7. Case study Citral
- 8. Case studies: Molecules with high quality LLNA and human data
- 9. Case studies new molecules

Overall approach

- Determine **«most likely LLNA EC3 value»** as **Point of departure** (PoD) with a defined approach (DA) using a data integration procedure (DIP)
 - Global model for all chemicals
 - Use a domain-model for prediction if available
- (Opt:) Refine prediction with targeted additional testing based on domain of molecule : Integrated approach for testing and assessment (IATA), requires some expert input
- Search for analogues in database with *in vitro* and *in vivo* data: Predict with same approach
 - Determine **uncertainty** based on prediction accuracy
- Determine an adjustment factor based on uncertainty analysis
- Divide PoD by adjustment factor to arrive at a final NESIL

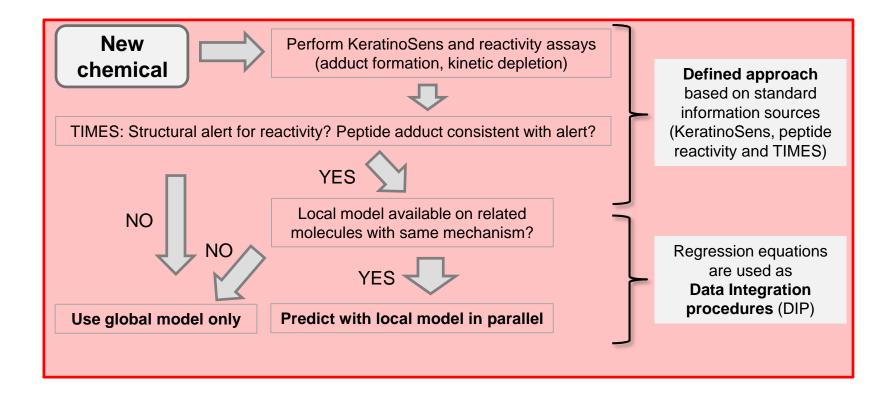
Givaudan

Overall approach: Schematic – details to follow.....

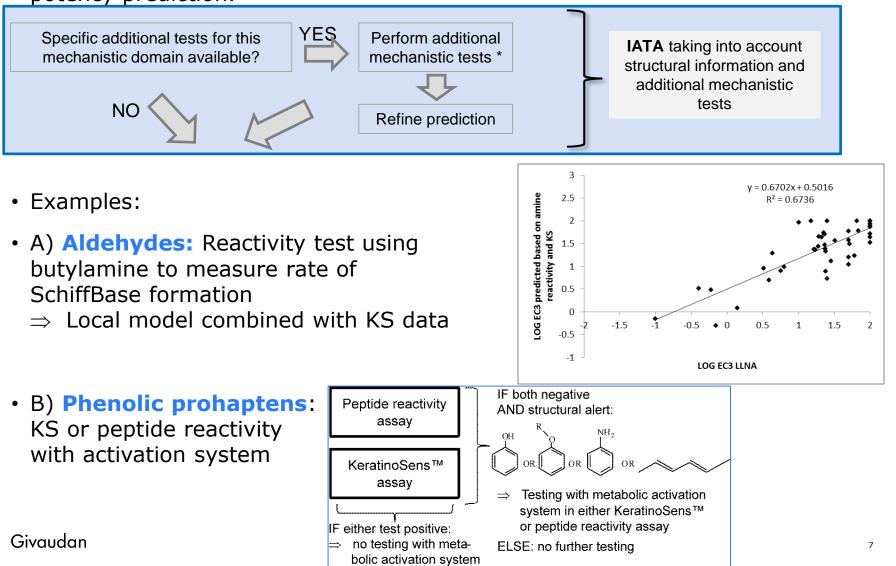


Defined approach (DA) : Potency based on kinetic peptide reactivity and quantitative KeratinoSens data

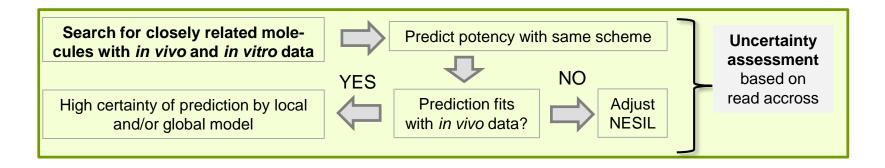
- Standard input data for all molecules in DA:
 - Dose response from KeratinoSens: EC1.5, EC3, IC50
 - Kinetic peptide reactivity (Rate constant for depletion)
 - Peptide adduct formation for reaction mechanism
 - TIMES for attribution to structural domains


Continous variables

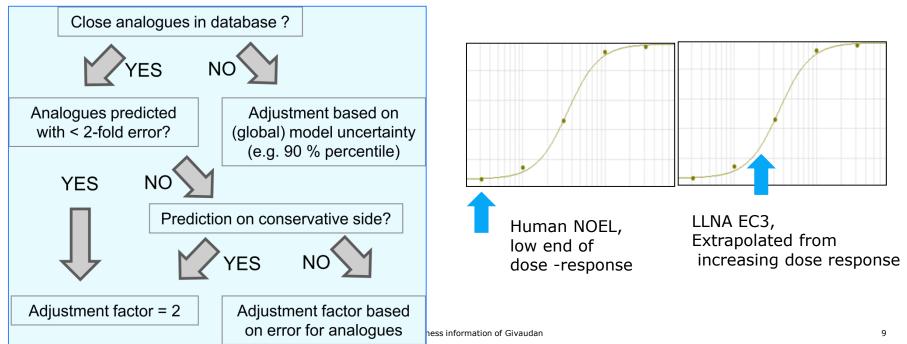
• Data interpretation procedure (DIP): Regression equations to predict **Likely LLNA EC3** as point of departure (PoD)


Domain and global assessments

- Based on TIMES SS and experimental peptide adduct data: Attribute chemicals to a domain (if applicable)
 - Global model for all chemicals
 - Use a domain-model for prediction if available


IATA: Targeted additional testing

• Depending on the structure / domain, specific tests may help to refine the potency prediction.


Uncertainty assessment

- Search for closely related molecules with existing *in* vivo data in database with similar substructure for the putative reactive part of the molecule
- Perform same assessment (DA / DIP / IATA)
- Compare outcome to *in vivo* situation
 - This helps to assess uncertainty for the very specific subdomain of chemicals
 - Based on the uncertainty assessment, NESIL may be adjusted

Adjustment of NESIL based on uncertainty assessment

- The predicted PoD (likely EC3 value) is transformed into a NESIL
- If uncertainty is low \Rightarrow Proposed adjustment factor = 2
 - Note: NESIL is defined as a NOEL
 - LLNA is extrapolated between NOEL and LOEL 3-fold proliferation is already an 'effect'
- If uncertainty is high adjust based on uncertainty assessment
- If no uncertainty assessment possible adjust based on precision of global model

Four types of case studies done:

- 15 molecules with mainly congruent LLNA and human data, with human NOEL and LOEL (No /Lowest observed effect dose) data
 - Allows direct comparison of derived NESIL with human and animal derived NESIL
- 7 molecules with partly discordant human and LLNA data / missing human LOEL values
 - Indicates how DA /IATA compares against LLNA or human data for difficult cases
- 3 new molecules tested as case studies and later challenged by LLNA
 - Molecules tested when REACH still considered LLNA as mandatory, unique opportunity to challenge predictions by *in vivo* data
- 4 new molecules, no LLNA data available nor currently planned
 - Demonstrates approach to risk assessment in absence of animal data

Case study Citral

 One infocard covers all steps for each molecule; same info card generated for each molecule to be assessed

Case Study on Citral							
a) Data, assessment with DIP and additional mechanistic tests							
Name:	Citral		DPRA:		Cys-depletion: 85.7 % Lys-depletion : 16.9 % Positive in high category		
Structure:		0	KeratinoS	ens:	EC 1.5: 23 μM IC 50: 183 μM Positive		
TIMES parent:	Strong sensiti unsaturated alde		Prediction model:	global	EC3 5.2 %		
TIMES metabolite:	Weak sensitizer,	hydroperoxide	Prediction model:	Local	EC3 6.8 %		
LC-MS:	Cor1C420 deple Adduct: direct adduct 8.1%; Peptide oxidatio	Michael Acceptor (MA)	Additional mechanist tests:		Reactivity with amine groups to test for Schiff Base MoA		
Domain attribution:	Michael accepto	r Results nistic test			Low amine reactivity, local model with BA-test indicates lower Sensitization potential (EC3 = 11.6%); MA MoA confers stronger sensitization potential, assess with MA model.		
b) Analysis of cl	ose analogues fo	r uncertainty assessment			'		
Close analogue:		Farnesal	Farnesal		, Nal		
Rationale for selectir logue:	ng close ana-	β-alkyl-substituted αβ- aldehydes	tituted $\alpha\beta$ -unsaturated Di-substituted $\alpha\beta$ -unsaturated aldehydes				
Prediction close analog global model:	ue	EC3 2.3% EC3 1.7'			%		
Prediction close analog local model (MA):	ue	EC3 6.9 %		EC3 3.4 %			
In vivo results close ana	alogue:	EC3 11.7 %		EC3 7.5	%		
Prediction accuracy analogues: Local model predicts within 2-fold error; on conservative side							
c) IATA assessment and discussion							
Weight of evidence assessment: Directly reactive Michael acceptor based on LC-MS, aldehyde MoA of lower potency. Take EC3 = 6.8% from local MA model, moderate sensitizer, PoD: 1700 µg/cm ²							
Uncertainty assessment based on close analogues: Predictions with local model for close analogues indicate high certainty, predictions on conservative side. Adjustment factor to derive NESIL = 2.							
<i>In vivo</i> results: LLNA EC3 5.7% (1425 μg/cm ² , weighted average 11 studies[16]), 9.3% (Median 6 studies[31]), PoD LLNA and human: 1400 μg/cm ² , LOEL human 3870 μg/cm ²							
Discussion: In vitro pre	ediction vs. in vi	vo data: PoD derived from	in vitro test	s close to	LLNA and human PoD, below human		

DA and DIP results

IATA: additional tests and results

Uncertainty analysis: Close analogues with DA / DIP results and in vivo data

WoE and conclusions

Case study Citral: Prediction by DA and IATA

- Local Michael acceptor model predicts EC3 of 6.8%
- Close to global model (EC3 = 5.2%)
- IATA: SchiffBase formation alternative MoA
 - Amine reactivity would indicate weaker activity Michael acceptor MoA confers stronger reactivity and sensitization: Use local MA model

	TIMES indicates MA acceptor, which is verified by LC-MS based protein		Cys-depletion: 85.7 % Lys-depletion : 16.9 % Positive in high category
Structure:	binding test	s:	EC 1.5: 2: IC 50: 18: Positive With BA-test indicates lower
TIMES parent:	Strong sensitizer, Di- substituted αβ-unsaturated aldehydes	Prediction global model:	EC3 5. EC3 5. EC3 5. Sensitization potential (EC3 = 11.6%); MA MoA confers stronger sensitization potential, assess with
TIMES metabolite:	Weak sensitizer, hydroper- oxide	Prediction Local model:	EC3 6.8 MA model.
LC-MS:	Cor1C420 depletion: 27.2 % Adduct: direct Michael Acceptor (MA) adduct 8.1%; Peptide oxidation predomi- nant	Additional mechanistic tests:	Reactivity amine groups to for Schiff Base M
Domain attribution:		Results mechanistic tests:	Low amine reactivity, local model with BA-test indicates lower Sensi- tization potential (EC3 = 11.6%); MA MoA confers stronger sensitiza- tion potential, assess with MA mod-
	Confidential and proprie	1	el. 12

Case study Citral: Uncertainty assessment

- Related β -branched, $\alpha\beta$ -unsaturated aldehydes assessed
- Local MA models predicts EC3 within 2-fold error, on conservative side
- Indicates high certainty of the prediction for Citral

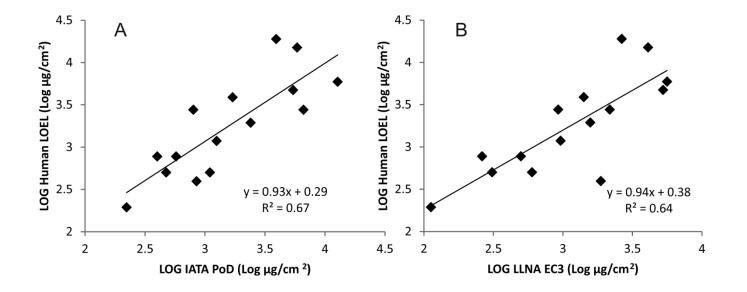
Close analogue:	Farnesal	0 Safranal
e e e e e e e e e e e e e e e e e e e	, , ,	Di-substituted αβ-unsaturated al- dehydes
Prediction close analogue global model:	EC3 2.3%	EC3 1.7%
Prediction close analogue local model (MA):	EC3 6.9 %	EC3 3.4 %
<i>In vivo</i> results close ana- logue:	EC3 11.7 %	EC3 7.5 %
Prediction accuracy ana- logues:	Local model predicts with side	in 2-fold error; on conservative

Case study Citral: Conclusions

• IATA assessment and discussion

<u>Weight of evidence assessment</u>: Directly reactive Michael acceptor based on LC-MS, aldehyde MoA of lower potency. Take EC3 = 6.8% from local MA model, moderate sensitizer, PoD: 1700 μ g/cm²

<u>Uncertainty assessment based on close analogues</u>: Predictions with local model for close analogues indicate high certainty, predictions on conservative side. Adjustment factor to derive NESIL = 2.


In vivo results: LLNA EC3 5.7% (1425 μ g/cm², weighted average 11 studies[16]), 9.3% (Median 6 studies[31]), PoD LLNA and human: 1400 μ g/cm², LOEL human 3870 μ g/cm²

Discussion: *In vitro* prediction vs. *in vivo* data: PoD derived from *in vitro* tests close to LLNA and human PoD, below human LOEL.

- Final NESIL: PoD / adjustment factor of 2: 850 µg/cm²
- NESIL human data: 1400 µg/cm²
- NESIL LLNA data: 1400 µg/cm²

Case studies: Molecules with high quality LLNA and human data

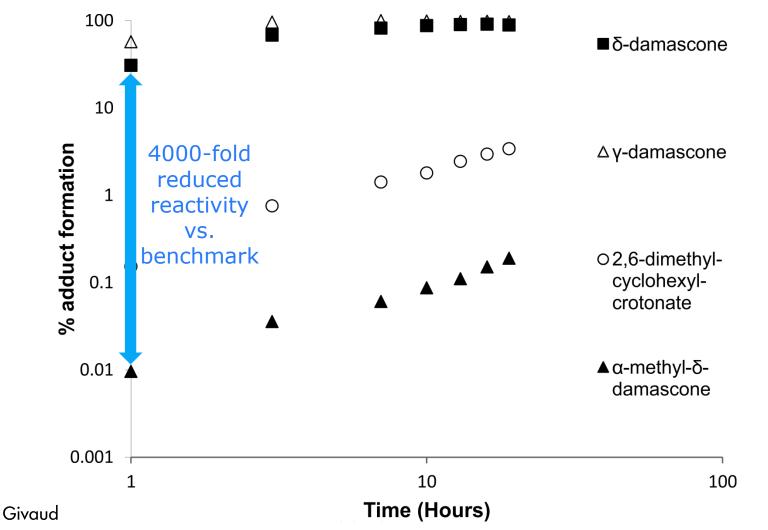
- 15 fragrance molecules with human NOEL, LOEL and LLNA EC3
- The PoD (= predicted LLNA EC3) is compared to LLNA and human data
 - Overall good correlation of IATA PoD with Human LOEL, PoD 0.29 Log units (=2-fold) below LOEL
 - Similar correlation between LLNA EC 3 and human LOEL

Case studies: Molecules with high quality LLNA and human data

• For illustration: Summary of seven case studies

Table 1. Case studies 1-7 on sensitizers with congruent human and LLNA data leading to similar NESIL ^{1) 2)}

Chemical	NESIL human (human NOEL) (μg/cm ²)	Human LOEL (µg/cm ²)	NESIL/ EC3 LLNA (µg/cm ²)	PoD IATA (µg/cm²)	Uncertainty assessment IATA PoD	Adjustement factor to derive NESIL	IATA derived NESIL (µg/cm²)
Citral	1400	3876	1414	1700	high certainty	2	850
Phenylacetaldehyde	590	1180	962	1250	high certainty	2	625
Cinnamic aldehyde	591	775	262	575	high certainty	2	288
Cinnamic alcohol	3000	4724	5250	5425	high certainty, predictions of analogues on conservative side	2	2712
Isoeugenol	250	775	498	400	limited; analogues well predicted	2 if taking conservative model	200
2-phenyl- propionaldehyde	388	1938	1575	2400	high certainty	2	1200
2-hexyliden cyclopentanone	300	500	600	1100	high certainty	2	550


Case studies on new molecules: α -methyldamascone

a) Data, assessment with DIP and additional mechanistic tests

Name:	α-methyl-δ-damascone [(E)-2-methyl-1-((1S,2R)-2,6,6- trimethylcyclohex-3-en-1-yl)but-2-en-1- one]	DPRA:	Cys-depletion: 4.4 % Lys-depletion : 0.2 % Negative in minimal category, <0.1% peptide adduct
Structure:		KeratinoSens:	EC 1.5: >1000 μM IC50: 69.6 μM Negative
TIMES parent:	strong sensitizer, α,β-Carbonyl compounds with polarized double bonds	Prediction global model:	E Better characterize reactivity of close damascone analogue.
TIMES metabolite:	strong sensitizer, $\alpha\beta$ -Carbonyl compounds with polarized double bonds	Prediction Local model:	EC3 58
LC-MS:	Cor1C420 depletion: 6.8 %; Adduct: trace (< 0.5%) direct MA adduct	Additional mechanis- tic tests:	Kinetic profiling of adduct formation vs. benchmarks, see Fig- ure 4 main document
Domain attribu- tion:	Michael acceptor	Results mechanistic tests:	4000-fold reduction in kinetic reaction rate vs. damascones

α -methyldamascone: Kinetic adduct formation

- Low reactivity cannot be accurately quantified based on depletion
- Additional test to quantify and verify low reactivity: Kinetic adduct formation

Case studies on new molecules: α -methyldamascone

a) Analysis of close analogues for uncertainty assessment

Close analogue:		
	Methylionone	Delta-damascone
Rationale for selecting close analogue:		α,β-Carbonyl compounds with polarized double bonds
Prediction close analogue global model:	Negative, EC3 34.6% by cytotoxicity	EC3 1%
Prediction close analogue local model (MA):	Negative, EC3 63.3 % by cytotoxicity	EC3 2.7 %
In vivo results close analogue:	2	EC3: 9.6/0.9/5.2; Median 5.2% HRIPT LOEL 500 μg/cm ²
Prediction accuracy analogues:	Good prediction with local model, esp. for l	human data

α -methyldamascone: IATA assessment and discussion

- Weight of evidence assessment:
 - Hazard assessment 2 out of 3: Negative (Negative KS and negative DPRA)
 - Very low residual reactivity observed by adduct formation
 - predicted very weak sensitizer, EC3 60%; PoD 15'000 $\mu\text{g}/\text{cm}^2$
- <u>Uncertainty assessment based on close analogues</u>: Prediction with local model for close analogues indicate high certainty, esp. for human data
 - Note: Methylionone has equal cytotoxicity (IC50 = 58 μM), highly similar structure
 - Methylionone is non-reactive and negative in human tests at high conc.; positive LLNA at EC3 21% could be due to irritation.
- In vivo results: Negative, EC3 >25%
 - LLNA performed after this prediction was made
- <u>Discussion</u>
 - In vivo data congruent with prediction and observation of very low reactivity
 - *In vitro* and *in vivo* data overrule the TIMES alert: TIMES sees 2D alerts, steric effects not taken into account!

Case studies: Two other new molecules, later challenged by LLNA

- Two molecules:
 - A) Crotonate: Predicted weak sensitizer, low direct reactivity observed
 - B) Oxime ether: Parent non sensitizer, weak sensitizer predicted due to metabolic activity

Chemical structure	TIMES predic- tion	KS re- sult	Peptide reac- tivity	PoD IATA (µg/cm ²)	Uncertainty assessment IATA PoD	Adjuste- ment fac- tor to derive NESIL	IATA derived NESIL (µg/cm ²)	LLNA result ¹⁾
2,6- dimethylcyclohexyl- crotonate	weak sensitizer, α,β-Carbonyl / polarized double bonds	negative	Cor1C420: 5% direct MA adduct; DPRA low category	EC3 30 – 40% ; 11'000 μg/cm ²	low uncer- tainty	2	5500	Positive, EC3 21%; 5450 μg/cm ²
(E)-3-ethoxy-4- hydroxybenzaldehyde O-methyl oxime	Parent: Non- sensitizer Metabolite : Strong sensiti- zer, Quinoide oxime structure	negative	Cor1C420: 5.7 % depletion; no adduct; DPRA nega- tive	EC3 30 – 50 %, 7500 μg/cm ² .	High certain- ty for four tested ana- logues; Remaining uncertainty due to meta- bolic activa- tion	2	3750	Negative, EC3 >25%; >6250 μg/cm ²

Table 3. Risk assessment for three new molecules without animal data – later challenged by LLNA ¹⁾

¹⁾Determined after IATA assessment was made

Case study: Oxime ether, potential prohapten

•Data, assessment with DIP and additional mechanistic tests

Name:	(E)-3-ethoxy-4- hydroxybenzaldehyde O- methyl oxime	DPRA:	Cys-depletion: 7.3 % Lys-depletion : 2.9 % Negative in minimal category, no adduct
Structure:	O-N OH	KeratinoSens:	EC 1.5: >1000 μM IC50: >1000 μM Negative
TIMES parent:	Non-sensitizer	Prediction global model:	Non-sensitizer; EC3 >100 %
TIMES metabolite:	Strong sensitizer ; Quinone methide(s)/imines, Quinoide oxime structure, Nitroquinone	Prediction Local model:	
LC-MS:	Cor1C420 depletion: 5.7 % Adduct: no adduct	Additional mechanistic tests:	Test in presence of metabolic system (LC-MS and KS)
Domain attribution:	Quinone methide precursor	Results mechanistic tests:	Small trace of peptide adduct in presence of microsomes, positive in KeratinoSens with S9

Givaudan

Case study: Oxime ether, potential prohapten

•Analysis of close analogues for uncertainty assessment

Close analogue:	OH OH Isoeugenol		OH U Ethylvanillin	N OH Benzaldoxime
Rationale for selecting close analogue:	Quinone methide precursor	Quinone methide precursor	Substructure of target	Aromatic oxime; Substructure of target
Prediction close analogue global model:	EC3 1.6 %	EC3 14.1 %	EC3 41 %	EC3 29.8%
Prediction close analogue local model:	EC3 7.9 %	EC3 16.2 %	EC3 49 %; >100% model with BA-test	No model
<i>In vivo</i> results close analogue:	EC3 1.8 %	EC3 12.9 %	> 50%	> 20%
Prediction accuracy analogues:	Good predicti in case of isoe	on with local and global eugenol	model, better accur	acy for global model

Case study on new material: Risk assessment without LLNA

 New molecule predicted as sensitizer by TIMES, KeratinoSens, DPRA and LC-MS assay

a) Data	a) Data, assessment with DIP and additional mechanistic tests						
Name:	ethyl (Z)-2-acetyl-4-methyltridec-2-enoate	DPRA:	Cys-depletion: 27.8 % Lys-depletion : 1.3 % Positive in low category , ca. 6.6% direct adduct with Cys-peptide				
Structure:		KeratinoSens:	EC 1.5: 7.95 μM EC3 not reached due to cytotoxicity IC50: 13.2 μM Positive				
TIMES parent:	strong sensitizer, αβ-Carbonyl com- pounds with polarized double bonds	Prediction global model:	EC3: 5.1 %				
TIMES metabolite:	strong sensitizer, αβ-Carbonyl compounds with polarized double bonds	Prediction Local model:	EC3: 14 %				
LC-MS:	Cor1C420 depletion: 14 % Adduct: direct MA adduct Peptide oxidation predominant	Additional mechanistic tests:	Not needed				
Domain attribution:	Michael acceptor	Results mech- anistic tests:	n/a				

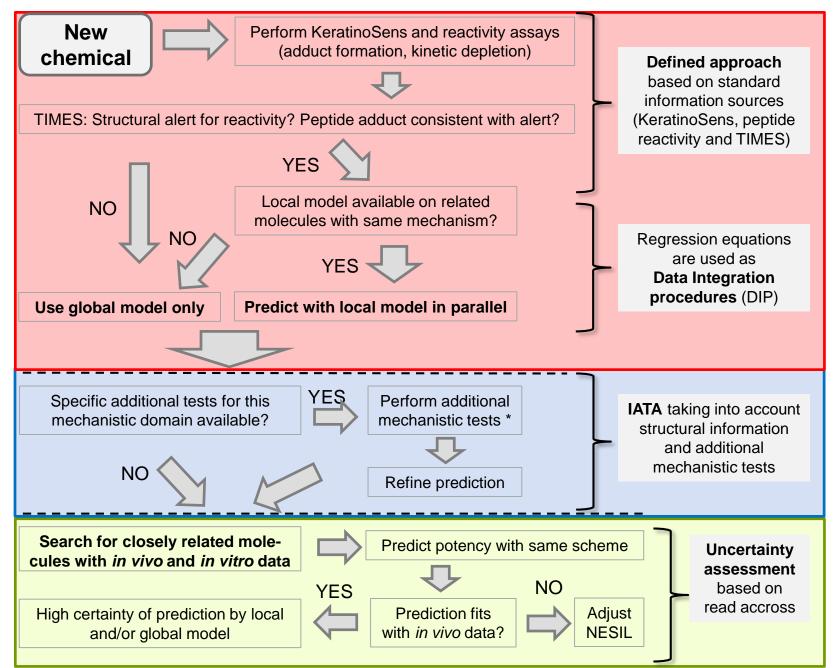
Givaudan

Case study on new material: Risk assessment without LLNA

- Uncertainty assessment:
 - Related analogues: Michael acceptors with the double bond activated by two carbonyl groups
 - Well predicted by global and local model, here global model more accurate and on conservative side
 - Use global model for conservative assessment

a) Analysis of close analogues for uncertainty assessment						
Close analogue:	0 0 Diethylmaleate	ethyl (Z)-2-acetyldec-2-enoate				
Rationale for selecting close analogue:	Double activated MA-ester	Double activated MA-ester, substruc- ture of target				
Prediction close analogue global model:	EC3 1.4%	EC3 3%				
Prediction close analogue local model (MA):	EC3 3.8 %	EC3 5.6 %				
In vivo results close analogue:	EC3 2.1 %	EC3 2.6 %				
Prediction accuracy analogues:	Good prediction with local and global model, better accuracy for global model for these double activated MA-esters					

Givaudan


ethyl (Z)-2-acetyl-4-methyltridec-2-enoate: IATA assessment and discussion

- Weight of evidence assessment:
 - Hazard assessment 2 out of 3: Positive (Positive KS and positive DPRA)
 - Directly reactive Michael acceptor
 - Conservative assessment takes EC3 from global model
 - EC3 = 5.1%; PoD 1250 μg/cm²
- <u>Uncertainty assessment based on close analogues</u>:
 - Prediction with global model for close analogues indicates high certainty
 - adjustment factor to derive NESIL = 2, since conservative assessment from global model taken

In vivo results:

- No LLNA planned, use NESIL from this assessment
- NESIL = 625 μ g/cm²

Overall approach: Hopefully clear by now

Discussion and Conclusion

- Structured approach with clearly defined data sources
- Takes chemical information into account
- Uses continous variables from *in vitro* tests
- Read accross to chemicals with known *in vivo* and *in vitro* data helps to assess uncertainty
 - Clearly possible in the data-rich domain of fragrance molecules may be more difficult in other use sectors!
- Adjustment based on uncertainty assessment to transform PoD into NESIL for risk assessment
- Good prediction for fragrance molecules with high quality animal and human *in vivo* data
- Good prediction for three new molecules which were only later tested in LLNA
- Approach deemed fit-for-purpose and now used on our latest four market candidates with no animal data

Thank you

Contact

Givaudan

Confidential business and proprietary information of Givaudan, may not be copied or distributed to anyone without the express written permission of Givaudan