May 16-17, 2018 IDEA Workshop on the replacement of animal testing in QRA for skin sensitization

Kao's Case Study (hydroxycitronellal, coumarin)

Masaaki Miyazawa

Enriching lives, in harmony with nature.

Regulatory Accepted Non-animal Test Methods

Kao

Regulatory Accepted Non-animal Test Methods

203 chemical dataset using the currently available dataset (Urbisch et al, 2015; Takenouchi et al., 2015; Jaworska et al, 2015)

ΠΝΑ	DPRA		KeratinoS	ens™	h-CLAT	
	Positive	Negative	Positive	Negative	Positive	Negative
151 sensitizers	108	43	112	39	124	27
52 non-sensitizers	15	37	21	31	18	34
Sensitivity (%)	7	71.5	7	74.2	8	32.1
Specificity (%)	7	71.2	5	59.6	6	65.4
Accuracy (%)	7	71.4	70.4		77.8	
human	DPRA		KeratinoS	ens™	h-CLAT	
human	DPRA Positive	Negative	KeratinoS Positive	Sens™ Negative	h-CLAT Positive	Negative
human 72 sensitizers	DPRA Positive 61	Negative 11	KeratinoS Positive 59	Sens™ Negative 13	h-CLAT Positive 64	Negative 8
human 72 sensitizers 25 non-sensitizers	DPRA Positive 61 5	Negative 11 20	KeratinoS Positive 59 7	Sens™ Negative 13 18	h-CLAT Positive 64 8	Negative 8 17
human 72 sensitizers 25 non-sensitizers Sensitivity (%)	DPRA Positive 61 5	Negative 11 20 34.7	KeratinoS Positive 59 7	Sens™ Negative 13 18 82	h-CLAT Positive 64 8	Negative 8 17 38.9
human 72 sensitizers 25 non-sensitizers Sensitivity (%) Specificity (%)	DPRA Positive 61 5 8	Negative 11 20 34.7 30.0	KeratinoS Positive 59 7	Negative 13 18 82 72.0	h-CLAT Positive 64 8 8	Negative 8 17 38.9 58.0

One single non-animal test method is not sufficient to cover the AOP and to have 100% accuracy compared with the LLNA and human

Defined Approaches in OECD IATA Guidance

Kao

Integrated testing strategies (ITS) that use multiple tests have been developed to evaluate the sensitizing potential and potency of chemicals

Workflow to Conclude a Non-sensitizer

- > There is no differential weighting of the individual test methods used.
- These strategies are likely to yield low false negatives and high false positives and unlikely to be effective as a replacement strategy of LLNA.

Examine whether combination of individual test methods is optimal to conclude a <u>non-sensitizer</u> as <u>a first tier</u> of bottom-up approach

Potential Overlapping Information of Individual Test Methods

- Kao
- Individual test methods qualitatively and conceptually address each KE of the AOP, rather than being their exact reproduction
- > Provide overlapping information in covering KEs.
 - ✓ Both the DPRA and KeratinoSens cover the KE of protein reactivity, such as binding to thiol residues of cysteine (Natsch et al., 2010)
 - ✓ Binding to cysteine or lysine residues within proteins could drive MAPK signaling pathway modulation and subsequent up-regulating DC activation like h-CLAT (Megherbi et al., 2009; Guedes et al., 2016)
- Binary test battery of KS* (KE2) and h-CLAT (KE3) might provide sufficient information to address protein binding (KE1)

*KeratinoSens

Predictive capacity of binary test battery with KS and h-CLAT was examined with 203 chemical dataset when compared with 2 out of 3 ITS

LLNA	Binary test battery of KS and h-CLAT		2 out of 3		3 out of 3			
	Positive	Negative	Positive	Negative	Positive	Negative	-	
151 sensitizers	141	10	119	32	146	5		
52 non-sensitizers	33	19	15	37	37	15		
Sensitivity (%)	9	3.4 🔶	7	'8.8	9	6.7	_	
Specificity (%)	3	86.5	7	71.2	2	28.8		
Accuracy (%)	7	78.8	7	76.8	79.3			
human	Binary test battery of KS and h-CLAT		2 out of 3		3 out of 3		LLNA	
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative
72 sensitizers	68	4	64	8	72	0	66	6
25 non-sensitizers	14	11	4	21	16	9	9	16
Sensitivity (%)	94.4 🔶		8	88.9		100		1.7
Specificity (%)	2	14.0	8	34.0	3	36.0	6	64.0
Accuracy (%)	8	31.4	8	37.6	8	33.5	84.5	

Binary test battery of KS and h-CLAT has higher sensitivity than 2 out of 3 ITS when compared with LLNA and human

False Negative Chemicals in Binary Test Battery

LLNA (Pos/Neg), Human (Pos/Neg/No data), DPRA (Pos)

Chemical name	LLNA EC3	Human	Discussion
Benzoyl peroxide	0.22	Positive	Acyl transfer agent, amine reactive chemical
Squaric acid	4.3	Positive Amine reactive chemical	
Phthalic anhydride	0.16	Negative	Acyl transfer agent, amine reactive chemical
1,2-cyclohexane dicarboxylic	0.84	No data Acyl transfer agent, amine reactive chem	
Diethylenetriamine	5.8	Positive	Pro(pre)-hapten
Kanamycin	- (Negative)	Positive	Allergen in human after considerable exposure

Acylating agents or amine-reactive chemicals

Pre/pro-hapten

LLNA (Pos), Human (No data), DPRA (Neg)

Chemical name	LLNA EC3	Human	Discussion	
Clotrimazole	4.8	No data	LogKow=6.26	
1-Cyclohexylethyl 2- butenoate	5.53	No data	LogKow=4.32	Lipophilic chemicals
N,N-Dibutylaniline	19.6	No data	LogKow=5.12	(100KOW > 3.5)
1-Octen-3-yl acetate	30	No data	LogKow=3.6	
Methyl pyruvate	2.4	No data	Undergo hydration in aqueous assay solution	

Acylating agents, pre/pro-haptens, and lipophilic chemicals are considered predictive limitations of binary test battery

→ TIMES and EPI suite are useful to identify chemicals falling into the predictive limitations

False Negative Chemicals in Binary Test Battery

Kao

LLNA (Pos/Neg), Human (Pos/Neg/No data), DPRA (Pos)

Chemical name	LLNA EC3	Human	Discussion			_
Benzoyl peroxide	0.22	Positive	Acyl transfer agent, amine re	active chem	nical	
Squaric acid	4.3	Positi AC	ylating agents or		Α	dditional testing with DPRA might
Phthalic anhydride	0.16	Nega am	nine-reactive chemic	als hem	nica b	e useful for acylating agents and
1,2-cyclohexane dicarboxylic	0.84	No data	Acyl transfer agent, amine re	active chem	nica P	re/pro-haptens.
Diethylenetriamine	5.8	Positi Pre	e/pro-hapten			
Kanamycin	- (Negative)	Positive	Allergen in human after cons	iderable exp	posure	

LLNA (Pos), Human (No data), DPRA (Neg)

Chemical name	LLNA EC3	Human Discussion	
Clotrimazole	4.8	No data LogKow=6.26	Additional supporting info, might be
1-Cyclohexylethyl 2- butenoate	5.53	No Lipophilic chemicals	needed. Nevertheless, DPRA has flexibility
N,N-Dibutylaniline	19.6	No (logKow >3.5)	of available solvents and allows to add up
1-Octen-3-yl acetate	30	No data LogKow=3.6	to 20% acetonitrile compared with 1%
Methyl pyruvate	2.4	No data Undergo hydration in aqueous	

DPRA is recommended only for chemicals falling into predictive limitations after testing KS and h-CLAT

Workflow to Conclude a Non-sensitizer

Review chemical reactivity using TIMES and logKow using EPI suite

AOP-based "binary test battery" and "additional test with DPRA" are effective as a first tier to conclude a non-sensitizer

Publication Available Online

Kao

Regulatory Toxicology and Pharmacology 88 (2017) 118-124

Binary test battery with KeratinoSensTM and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction

Yuki Otsubo, Taku Nishijo, Masaaki Miyazawa^{*}, Kazutoshi Saito, Hideyuki Mizumachi, Hitoshi Sakaguchi

Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan

ARTICLE INFO

Article history: Received 5 February 2017 Received in revised form 12 April 2017 Accepted 5 June 2017 Available online 7 June 2017

Keywords: Skin sensitization KeratinoSens™ h-CLAT Hazard identification Bottom-up approach

ABSTRACT

Skin sensitization is one of the key safety endpoints for chemicals applied directly to the skin. Several integrated testing strategies (ITS) using multiple non-animal test methods have been developed to accurately evaluate the sensitizing potential of chemicals, but there is no regulatory-accepted ITS to classify a chemical as a non-sensitizer. In this study, the predictive performance of a binary test battery with KeratinoSens[™] and h-CLAT compared to the local lymph node assay (LLNA) and human data was examined using comprehensive dataset of 203 chemicals. When two negative results indicate a non-sensitizer, the binary test battery provided sensitivity of 93.4% or 94.4% compared with the LLNA or human data. Taking into account the predictive limitations (i.e. high log Kow, pre-/pro-haptens and acyl transfer agents (or amine-reactive)), the binary test battery had extremely high sensitivity comparable to that of the 3 out of 3 ITS where three negative results of the DPRA, KeratinoSens[™] and h-CLAT indicate a non-sensitizer. Therefore, the data from KeratinoSens[™] or h-CLAT may provide partly redundant information on the molecular initiating event derived from DPRA. Taken together, the binary test battery of KeratinoSens[™] and h-CLAT could be used as part of a bottom-up approach for skin sensitization hazard prediction.

© 2017 Elsevier Inc. All rights reserved.

Workflow to Classify Potency of a Sensitizer

Review chemical reactivity using TIMES and logKow using EPI suite

Examine how BN ITS-3 can be used to classify sensitizing potency

(LLNA data set of 203 chemicals)

LLNA	Number*	BN ITS-3 Prediction				
category	(176)	Strong	Moderate	Weak	NS	
Extreme – Strong	30	22	6	2	0	94% (134/142)
Moderate	56	14	27	13	2	Specificity ·
Weak	56	6	6	38	6	85% (29/34)
Negative	34	1	2	2	29	Under-predicted
Accuracy(%)		73.3	48.2	67.9	85.3	Concordant

*Excluded metals, salts, and chemicals negative in all three test methods

- > 20% (29 / 142 chemicals) of under-prediction for potency classification.
- ➢ For 93% of tested chemicals, the prediction falls within one potency class mis-prediction.
- Hexyl salicylate and benzoyl peroxide fall into strong potency in LLNA, but weak potency in BN ITS-3.
- Diethylenetriamine and squaric acid fall into moderate potency in LLNA, but negative in BN ITS-3.

Under-predicted Chemicals

Chemical	LLNA	EC3 (%)	BN ITS-3	Discussion
Undec-10-enal	moderate	6.8	weak	
p-Isobutyl-a-methyl hydrocinnamaldehyde	moderate	9	weak	
Hexyl salicylate	Strong	0.18	weak	Lipophilic chemicals
Farnesol	moderate	4.1	weak	(LogKow>3.5)
2-Nitro-4-phenylenediamine	strong	0.5	moderate	
Dihydroeugenol	moderate	6.8	weak	
Dibenzyl ether	moderate	6.3	weak	
4-chloroaniline	moderate	6.5	weak	Dro/Dro hatatono
Diethylenetriamine	moderate	5.8	NS	Pre/Pro-matplens
Phthalic anhydride	strong	0.16	moderate	
Maleic anhydride	strong	0.16	moderate	
1,2-cyclohexane dicarboxylic anhydride	strong	0.84	moderate	Aculating agents or
Benzoyl peroxide	Strong	0.22	weak	Acylating agents of
Squaric acid diethyl ester	strong	0.9	moderate	amine reactive chemicals
Squaric acid	moderate	4.3	NS	
Formaldehyde	strong	0.61	moderate	
1-Phenyl-1_2-propanedione	moderate	1.3	weak	
Allyl phenoxyacetate	moderate	3.1	weak	
6-Methyl-3 5-heptadien-2-one	moderate	5	weak	
trans-2-Hexenal	moderate	5.5	weak	
Perillaaldehyde	moderate	8.1	weak	
Methyl methanesulphonate	moderate	8.1	weak	
3-Methyl-1-phenylpyrazolone	moderate	8.5	weak	
Oxalic acid anhydrous	weak	15	NS	
Benzocaine	weak	22	NS	
Pyridine	weak	72	NS	
Diethyl acetaldehyde	weak	76	NS	
Aniline	weak	89	NS	
Methylmethacrylate	weak	90	NS	

Under-predicted Chemicals

Chemical	LLNA	EC3 (%)	BN ITS-3	Discussion	
Undec-10-enal	moderate	6.8	weak		
p-Isobutyl-a-methyl					
Hexyl salicylate					c chemicals
Farnesol	Lipophilic chemicals (IOGKOW>3.	.5)		w>3.5)
2-Nitro-4-phenylened	Pre/pro-hantens				
Dihydroeugenol	A subting a grante on a	antin a superation	ture also set as	le.	
Dibenzyl ether	Acylating agents or a	mine react	ive chemica	IS	
4-chloroaniline					hatotens
Diethylenetriami					haptene
Phthalic anhydride					
Maleic anhydride	Potential under-pred	dicted cher	nicals in BN	ITS-3	
1,2-cyclonexane dica					agents or
Squaric acid diothyl actor	ctropg	0.0	modorato		ive chemicals
Squaric acid	moderate	0.9	NIC		
	strong	т.5 0.61	moderate		
1-Phenyl-1 2-propanedione	moderate	1 3	weak		
Allyl phenoxyacetate	moderate	3.1	weak		
6-Methyl-3 5-heptadien-2-one	moderate	5	weak		
trans-2-Hexenal	moderate	5.5	weak		
Perillaaldehyde	moderate	8.1	weak		
Methyl methanesulph	No specific reas	on for und	or-prodictio	nc	
3-Methyl-1-phenylpyl			ei-preulctio	115	
Oxalic acid anhydrous	weak	15	NS		
Benzocaine	weak	22	NS		
Pyridine	weak	72	NS		
Diethyl acetaldehyde	weak	76	NS		
Aniline	weak	89	NS		
Methylmethacrylate	weak	90	NS		

Modified Potency Classification by BN ITS-3

Ka	\mathbf{O}

LLNA	Number	BN ITS-3 Prediction				
category	(94)	Strong	Moderate	Weak	NS	
Extreme – Strong	13	12	1	0	0	
Moderate	30	7	16	7	0	
Weak	25	2	3	14	6	
Negative	26	0	0	1	25	
Accuracy(%)		92.3	53.3	56.0	96.2	

*Excluded metals, salts, chemicals negative in all three test methods, chemicals with logKow>3.5, pre/prohaptens, and acylating agents or amine reactive

By excluding potential under-predicted chemicals, BN ITS-3 predictions fall within one potency class mis-prediction.

BN ITS-3 Decision		Modified potency classification
NS	⇒	Minimal potency → 10% ≤ EC3
Weak	\Rightarrow	Low potency → 1% ≤ EC3
Moderate	\Rightarrow	Moderate potency → 0.1% ≤ EC3
Strong	⇒	High potency → Not defined

Workflow to Evaluate Sensitizing Potential and Potency

Review chemical reactivity using TIMES and logKow using EPI suite

This workflow supports a practical skin sensitization assessment!

Bigger Stranger Stran

LOEL = lowest observed effect level; NA = Not Available

47th amendment of IFRA standard

I I NA Weldnied mean FU.3 Values		Human Data			
(μg/cm ²) [no. studies] Based	Potency assification on Animal Data ¹	NOEL – HRIPT (induction) (µg/cm ²)	NOEL – HMT (induction) (µg/cm ²)	LOEL ² (induction) (µg/cm ²)	WoE NESIL ³ (µg/cm ²)
>12 500 [2]	Weak	3 543 ⁴	5517 ⁴	8 858	3 500

Negative at 10, 25, 50% in LLNA (Vocanson *et al.*, 2006)

Well-known contact allergens listed in 26 fragrance substances

Hydroxycitronellal

- ✓ log Kow = 2.11 \rightarrow Not lipophilic
- ✓ TIMES ; Weak to Strong (Parent), NS (Metabolite), non-acylating agent
- ✓ KeratinoSens, h-CLAT ; both Positive → Judge as a sensitizer
- ✓ DPRA ; Positive
- ✓ BN ITS-3 prediction ; Moderate potency

 \rightarrow Kao's modified potency ;

 $0.1\% \leq EC3 \rightarrow NESIL^* = 9.59 \ \mu g/cm^2$

<u>Coumarin</u>

- ✓ log Kow = $1.51 \rightarrow$ Not lipophilic
- $\checkmark\,$ TIMES ; Non-sensitizer for parent and metabolite, non-acylating agent
- ✓ KeratinoSens ; Positive, h-CLAT ; Negative → Judge as a sensitizer
- ✓ DPRA ; Negative
- ✓ BN ITS-3 prediction ; Non-sensitizer
- \rightarrow Kao's modified potency ;

 $10\% \leq EC3 \rightarrow NESIL^* = 2003 \ \mu g/cm^2$

*Safford et al., Regul Toxicol Pharmacol. 2008 Jul;51(2):195-200.

Skin Sensitization Quantitative Risk Assessment

Hydroxycitronellal (HC)	Shampoo	Face Cream
Predicted EC3	<u>></u> 0.1%	<u>></u> 0.1%
NESIL*	9.59 [μg/cm²]	9.59 [μg/cm²]
SAF of QRA2**	300	100
AEL	0.032 [μg/cm ²]	0.096 [μg/cm ²]
CEL of Product***	72.6 [µg/cm ²] ¹⁾	5451 [µg/cm ²] ²⁾
Conc. limit. of HC in the product based on AEL/CEL (%)	0.044% (440ppm)	0.00175% (17.5ppm)
Conc. limit. of HC in the product based on current IFRA standard (47 th Amendment)	1% (Category 9)	1% (Category 5)
Coumarin (CM)	Shampoo	Face Cream
Coumarin (CM) Predicted EC3	Shampoo ≥10%	Face Cream ≥10%
Coumarin (CM) Predicted EC3 NESIL*	Shampoo ≥10% 2003 [μg/cm²]	Face Cream ≥10% 2003 [μg/cm ²]
Coumarin (CM) Predicted EC3 NESIL* SAF of QRA2**	<mark>≥10%</mark> 2003 [μg/cm ²] 300	Face Cream ≥10% 2003 [µg/cm ²] 100
Coumarin (CM) Predicted EC3 NESIL* SAF of QRA2** AEL	Shampoo ≥10% 2003 [μg/cm ²] 300 6.67 [μg/cm ²]	Face Cream ≥10% 2003 [µg/cm ²] 100 20.0 [µg/cm ²]
Coumarin (CM) Predicted EC3 NESIL* SAF of QRA2** AEL CEL of Product***	Shampoo ≥10% 2003 [µg/cm²] 300 6.67 [µg/cm²] 72.6 [µg/cm²] ¹⁾	Face Cream ≥10% 2003 [μg/cm ²] 100 20.0 [μg/cm ²] 5451 [μg/cm ²] ²⁾
Coumarin (CM) Predicted EC3 NESIL* SAF of QRA2** AEL CEL of Product*** Conc. limit. of CM in the product based on AEL/CEL (%)	Shampoo ≥10% 2003 [µg/cm²] 300 6.67 [µg/cm²] 72.6 [µg/cm²] ¹⁾ 9.19%	Face Cream ≥10% 2003 [µg/cm²] 100 20.0 [µg/cm²] 5451 [µg/cm²]² 0.367%

*Safford *et al.*, Regul Toxicol Pharmacol. 2008 Jul;51(2):195-200.

** IDEA Project, Final report on the QRA2 (2016)

***SCCS Notes of Guidance, 9th revision, 2016

1) $10.46g \times 0.01$ (RF) / $1440cm^2 = 72.6 \mu m/cm^2$

2) 1.54g x 1 (RF) x 2 (Frequency of application)/ 565cm² = 5451 $\mu m/cm^2$

Summary

- Kao
- ➢ Binary test battery of KeratinoSens and h-CLAT is first used to classify S/NS as a part of bottom-up approach. A positive result in either KeratinoSens™ or h-CLAT is a sensitizer.
- The majority of false neg. in the binary test battery were found to be acylating chemicals, pre/pro-haptens, and lipophilic chemicals (Log Kow >3.5). The additional test of DPRA is effective to minimize uncertainty for false negatives.
- It was proposed to initially use TIMES (commercially available) and EPI suite (freely available) to identify the above chemicals falling within predictive limitations.
- ➢ For potency prediction on risk assessment, the BN ITS-3 (P&G) is used as a second step.
- 20% (29 / 142 chemicals) of under-prediction for potency classification. For 93% of tested chemicals, the predictions of BN ITS-3 fall within one potency class mis-prediction, when compared with LLNA. The mis-prediction created uncertainty.
- ➤ The four modified potency classes were defined as worst case scenario, incl. minimal (10% ≤ EC3), low (1% ≤ EC3), moderate (0.1% ≤ EC3), and high potency (EC3 not defined). The lowest EC3 in each class is used to derive NESIL.

THANK YOU FOR YOUR ATTENTION!