Xenobiotic metabolising capabilities of cell preparations used in KE1, KE2 and KE3 tests

> Franz Oesch University of Mainz, Germany

First bar 5th passage, *second bar* 7th passage, *third bar* 8th passage Level of detection 22.7 pmol product/min/mg protein

N-acetyltransferase-1 activity in the S9 fraction 80 Activity [nmol/min/mg protein] 60 40 20 0

KeratinoSens® LuSens U937 THP-1 Rat liver

First bar 5th passage, *second bar* 7th passage, *third bar* 8th passage Level of detection 0.667 pmol product/min/mg protein

Aldehyde dehydrogenase activity in the cytosolic fraction of the keratinocytic cell lines

First bar 5th passage, second bar 7th passage, third bar 8th passage

Aldehyde dehydrogenase activities in the cytosolic fractions of dendritic cell lines

Cell line	Passage	Activities _a
		(nmol/ min/mg protein)

U937	7	<lod< th=""></lod<>
	8	<lod< td=""></lod<>
	9	<lod< td=""></lod<>
THP-1	7	<loq< td=""></loq<>
	8	<lod< td=""></lod<>
	10	<loq< td=""></loq<>

Rat liver 25.0 ± 4.0

LOD, level of detection: 1.96 LOQ, level of quantification: 3.91

Alcohol dehydrogenase activities in the cytosolic fractions

Cell line	Passage	Activities (nmol/min/mg protein)	LOD (nmol/min/mg protein)	LOQ (nmol/min/mg protein)
	5	<lod< th=""><th>16.1</th><th>32.3</th></lod<>	16.1	32.3
KeratinoSens°	7	<lod< td=""><td></td><td></td></lod<>		
	8	<lod< td=""><td></td><td></td></lod<>		
	5	<loq< td=""><td>6.40</td><td>12.8</td></loq<>	6.40	12.8
LuSens	6	<loq< td=""><td></td><td></td></loq<>		
	7	<loq< td=""><td></td><td></td></loq<>		
	7	<lod< td=""><td>23.3</td><td>46.5</td></lod<>	23.3	46.5
U937	8	<lod< td=""><td></td><td></td></lod<>		
	9	<lod< td=""><td></td><td></td></lod<>		
	7	30.1 ± 8.4	3.77	7.55
THP-1	8	<lod< td=""><td></td><td></td></lod<>		
	10	<loq< td=""><td></td><td></td></loq<>		
Rat liver		13.5 ± 2.1	1.73	3.45

LOD, level of detection; LOQ, level of quantification

Fabian et al. Arch Toxicol (2013) 87:1683-1696

Matsunaga et al. Anti-Cancer Drugs 2014, 25:868–877 reported aldo keto reductase activity in U937 cells

Cytochrome P450 (CYP), flavin-containing monooxygenase (FMO) and UDP glucuronosyltransferase (UGT) activities^a in the microsomal fractions

	Cytochrome P450			EMOC	UGT	
	EROD ^c	PROD ^c	BROD ^c	FMO	UGT-1 ^c	UGT-2 ^c
Cell lines ^b	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Rat liver	1,200 ± 72	241 ± 7	436 ± 70	11.02 ± 1.46	12.6 ± 0.2	251,000 ± 32,000
LOD ^c	2.36	7.00	0.954	0.420	0.173	2,510
LOQ	4.72	14.0	1.91	0.840	0.346	5,020

CYP: pmol/min/mg protein; FMO and UGT-1: nmol/min/mg protein; UGT-2: FU/min/mg protein

⁹ KeratinoSens, LuSens, U937, THP-1

^c EROD, 7-ethylresorufin O-deethylase, PROD; 7-pentylresorufin O-depentylase; BROD, 7-benzylresorufin O-debenzylase; FMO with benzydamine as substrate; UGT-1 with the planar substrate 4-methylumbelliferone; UGT-2, with the non-planar substrate 4-hydroxybiphenyl

^d LOD, level of detection; LOQ, level of quantification

Fabian et al. Arch Toxicol (2013) 87:1683-1696.

Skazik-Voogt et al. ALTEX33, 37-46, 2016: U937 and THP-1 no CYP3A mRNA

Performances of the investigated non-animal test methods and the '2 out of 3' approach in different datasets.

	Bauch et a	l. (2012)	Natsch et	al. (2013)	Urbisch et	al. 2015
	Acc [%]	n	Acc [%]	n	Acc [%]	n
Compared to LLNA data						
Peptide reactivity DPRA	79	54	80	145	75	194
KC activation KeratinoSens™	81	54	77	145	73	188
LuSens	77	54	_	_	73	77
DC activation (m)MUSST	74	54	71	141	73	149
h-CLAT	-	-	_	-	76	166
Compared to human data						
Peptide reactivity DPRA	86	51	_	_	84	102
KC activation KeratinoSens™	80	51	_	_	82	102
LuSens	84	51	_	_	79	61
DC activation (m)MUSST	86	51	_	_	78	85
h-CLAT – – – – 82 98						
Prediction model						
'2 out of 3' approach (vs. LLNA data)	83	54	81	145	79	180
'2 out of 3' approach (vs. human data)	94	51	-	-	90	101

Acc, accuracy; n, number of analyzed substances; KC, keratinocyte; DC, dendritic cell; "-", no data available or data not considered

2 out of 3' prediction model in Bauch et al. (2012): DPRA, LuSens, mMUSST); in Natsch et al. (2013): DPRA, KeratinoSens[™], MUSST; in Urbisch et al. 2015: DPRA, KeratinoSens[™], h-CLAT.

Urbisch et al. Regul Toxicol Pharmacol, 71:337-351, 2015

"2 out of 3" Performance vs. LLNA Data

Accuracy (%)	77.1
Sensitivity (%)	75.3
Specificity (%)	85.0
Balanced Accuracy (%)	80.2

Accuracy: Correct classification rate Sensitivity: True positive rate Specificity: True negative rate Balanced accuracy: Average of sensitivity and specificity

OECD Supporting document for evaluation and review of draft Guideline for Defined Approaches for Skin Sensitisation September 2019

Similar performance was demonstrated using the LuSens for KE2: *GD 256; Urbisch et al. Regul Toxicol Pharmacol, 71:337-351, 2015*

The 2 out of 3 DA achieved accuracies equivalent to the LLNA and performance exceeding that of the LLNA when compared to human data

Draft OECD Guideline Defined Approaches for Skin Sensitisation September 2019 Pre- and Pro-haptens and the Results of Nonanimal Tests as Well as the 2 out of 3 WoE Approach

TP = true positive

FN = false negativ

'+' = positive result in vivo

sensitivity = [TP/(TP + FN)]

Urbisch et al. Chem. Res. Toxicol. 2016, 29, 901–913

	North	LLNA final	Human final	DPRA (Cys+Lys)	Cys- Pentide	Keratino-	L CLAT	'2 out of 3' WoF
No.	Name			(HPLC)	(LC-MS)	Sens' ^m	n-CLAT	Approach
1	5-Amino-2-methylphenol	+		ТР	Adduct	ТР	no data	ТР
2	Ethylenediamine	+	+	ТР	No adduct	TP	ТР	ТР
3	4-Amino-m -cresol	+		TP	Adduct	TP	no data	ТР
4	Isoeugenol	+	+	ТР	Adduct	TP	FN	TP
5	1,4-Phenylene diamine	+	+	TP	Adduct	TP	TP	ТР
6	Hydroquinone	+	+	TP	Adduct	TP	TP	ТР
7	4-Allylanisole	+		TP	Adduct	inconclusive	TP	ТР
8	Propyl gallate	+	+	TP	No adduct	TP	TP	ТР
9	Eugenol	+	+	TP	Adduct	inconclusive	TP	ТР
10	3-Methylcatechol	+		TP	Adduct	TP	no data	ТР
11	2-Nitro-1,4-phenylendiamine	+	+	TP	Adduct	ТР	ТР	TP
12	4-(Methylamino) phenol sulfate (Metol)	+	+	ТР	Adduct	TP	no data	ТР
13	2,5-Diaminotoluene sulfate (PTD)	+	+	TP	Adduct	ТР	TP	ТР
14	Abietic acid	+	+	TP	No adduct	TP	FN	TP
15	Lauryl gallate	+	+	TP	No adduct	TP	TP	ТР
16	2-Aminophenol	+	+	TP	Adduct	TP	TP	ТР
17	Cinnamyl Alcohol	+	+	TP	Adduct	TP	ТР	ТР
18	Benzo(a)pyrene	+		TP	No adduct	TP	TP	ТР
19	2-methoxy-4-methylphenol	+		FN		FN	TP	FN
20	Resorcinol	+	+	FN		FN	TP	FN
21	3-Aminophenol	+		FN		FN	TP	FN
22	Geraniol	+	+	FN		ТР	TP	ТР
23	Diethylenetriamine	+	+	FN		FN	FN	FN
24	Farnesol	+	+	FN		ТР	ТР	ТР
25	3-Dimethylamino propylamine	+	+	FN		ТР	ТР	TP
26	N,N-Dibutylaniline	+		FN		FN	FN	FN
27	4-Chloroaniline	+		FN		ТР	ТР	ТР
		Sensi	itivity [%]:	67		80	83	81

No.	Name	LLNA final	Human final	DPRA (Cys+Lys) (HPLC)	Cys- Peptide (LC-MS)	Keratino- Sens TM	h-CLAT	'2 out of 3' WoE Approach
1	5-Amino-2-methylphenol	+		ТР	Adduct	ТР	no data	ТР
17	Cinnamyl Alcohol	+	+	ТР	Adduct	TP	ТР	TP
18	Benzo(a)pyrene	+		ТР	No adduct	ТР	ТР	ТР
19	2-methoxy-4-methylphenol	+		FN		FN	ТР	FN
20	Resorcinol	+	+	FN		FN	ТР	FN
21	3-Aminophenol	+		FN		FN	ТР	FN
22	Geraniol	+	+	FN		ТР	ТР	ТР
23	Diethylenetriamine	+	+	FN		FN	FN	FN
24	Farnesol	+	+	FN		ТР	ТР	ТР
25	3-Dimethylamino propylamine	+	+	FN		ТР	ТР	ТР
26	N,N-Dibutylaniline	+		FN		FN	FN	FN
27	4-Chloroaniline	+]	FN		ТР	ТР	ТР
		Sensitiv	ity [%]:	67		80	83	81

TP = true positive, FN = false negative; '+' = positive result in vivo; sensitivity = [TP/(TP + FN)] Urbisch et al. Chem. Res. Toxicol. 2016, 29, 901–913

<u>KeratinoSens in presence (filled symbols) and absence</u> (open symbols) of metabolic activation by rat liver S9:

Eugenol (a and b), methylisoeugenol (c and d), trans-anethole (e and f) and isoeugenol (g and h).

Natsch and Haupt, Toxicol Sci 135, 356–368, 2013

Recombinant human CYP content of skin-like rhCYP cocktail

content (pmol)
3.6
2.0
0.035
11
5.6
22

Bergström et al. J Invest Dermatol 127, 1145-1153, 2007

Effect of cofactors for conjugation and of pure epoxide hydrolase on homogenate-mediated mutagenicity

		Mutagenicity (% of control) in the presence of						
Test compound	No. of revertants above solvent control	ATP	UDP-glucu- ronic acid	Glutathione	ATP + UDP- glucuronic acid + gluta- thione	Epoxide hydro- lase		
BP (2 μg)	275, 206, 366	35, 38	31, 37	53, 56	15, 23	102, 105		
3-OH-BP (5 µg)	309, 503, 361	16, 46	22, 43	36, 37	0, 18	101, 111		
9-OH-BP (5 µg)	1115, 1776, 1895	84, 100	41, 45	70, 85	38, 49	98, 101		
BP-7,8-dihydrodiol (0.6-1 µg)	651, 515, 923	148, 166	68, 96	49, 51	55, 65	99, 109		
BP-9,10-dihydrodiol (50 µg)	644, 627, 753	106, 120	29, 35	18, 20	8, 14	61,66		

Presence or absence of ATP (10 mM), UDP-glucuronic acid (10 mM), glutathione (5 mM)

Glatt et al. Cancer Res 41, 270-277, 1981

BA, benz[a]anthracene; GSH, 5 mM glutathione; UDPG, 10 mM UDP-glucuronic acid; ATP, 10 mM ATP

Oesch et al. Xenobiotica 18, 35-44, 1988

		Mutagenicity with S. typhimurium TA 100						
		Нера	tocytes ⁺	Homogenate [‡]				
Compound	Carcinogenicity†	Potency¶	Max. effect¶	Potency¶	Max. effect¶			
DMBA	++++	13-3	1100	35.6	1120			
7-MBA	+++	3.0	960	10.9	1130			
12-MBA	++	3-0	380	10.8	1810			
6-MBA	++	1.2	210	8.3	830			
8-MBA	++	1-4	120	11.4	1560			
BA	+	3.6	400	10-7	1150			
4-MBA	+	1.7	160	50.9	3610			
5-MBA	+	2.7	100	10.5	1230			
9-MBA	-	1.4	500	12.5	2450			
10-MBA		2.0	150	8.9	860			
11-MBA		2.0	210	28.8	1970			
1-MBA	+	1.5	320	59-1	3080			
2 MPA	T	0.9	240	23.8	2480			
2 MDA	±	(0-3)	58	10.9	450			
5-MBA	±	(0.2)	35	6.8	430			

DMBA, 7,2- dimethylbenz[a]anthracene; MBA, methylbenz[a]anthracene

1-, 2- and 3-MBA produced 3, 1, and 1 tumors in combined carcinogenicity studies ("putative non-carcinogen")

Oesch et al. Xenobiotica 18, 35-44, 1988

Modulation of maximal upregulation of CD86 and CD54 on THP-1 cells by coculture with HaCaT keratinocytes

- 1 oxazolone
- 2 Bandrowski's base
- 3 2,4-dinitrochlorobenzene
- 4 acetaminophen
- 5 3-aminophenol
- 6 cinnamic aldehyde
- 7 isoeugenol
- 8 citral
- 9 tetramethylthiuram disulfide
- 10 2-methoxy-4-methylphenol
- 11 resorcinol
- 12 eugenol
- 13 geraniol
- 14 cinnamic alcohol

Hennen J, Blömeke B. ALTEX. 34, 279-288, 2017

Correlation analysis of EC Δ 10 (CD86) and EC Δ 50 (CD54) values obtained in the HaCaT/THP-1 coculture, or in THP-1 monoculture with human DSA₀₅ and murine LLNA EC3 values

Hennen J, Blömeke B. ALTEX. 34, 279-288, 2017

Hepatocyte-mediated binding of benzo[a)pyrene to cellular DNA (left panel) and exogenously added DNA (right panel).

Turchi et al. Mutat Res 190,31-34, 1987

		Activity (pmol/mg protein/min)							
Cells	で、「 計一日 」 「「	P-450 reductase	Microsomal epoxide hydrolase	Cytosolic epoxide hydrolase	Glutathione transferase	UDP-glucuronosyt transferase			
BALB3T3 A31		13,600	157	<2 ^c	231,000	n.t.			
BHK21 CI 13	k 1	9,400	7	0.6	156,000	9,000			
BT ₃ Ca _f		6,400	25	<1 ^c	151,200	8,740			
CHEL-1	ʻ 2	20,800	72	<1 ^c	538,000	9,840			
C3H10T1/2	-	11,600	139	<2 ^c	149,000	260			
CO-631	1	11,500	2381	<2 ^c	421,000	180			
CO-6-SI		6,500	1022	< 2 ^c	317,000	< 50 ^c			
CO-60	1	16,100	1352	< 2 ^c	335,000	980			
FRH	2	22,800	20	n.t.	29,000	n.t.			
HepG2	· 4	45,900	265	13	47,100	n.t.			
нка	8	34,100	1240	n.t.	327,000	n.t.			
HM-1	2	25,700	114	2.1	41,000	< 50 ^c			
HuFoe-15	1	10,600	135	4.2	3,200	< 50°			
IEC-17		8,400	37	1.5	47,400	11 ,8 20			
IEC-18		8,600	83	3.0	31,800	4,630			
REL-1		4,900	16	n.t.	16,600	n.t.			
Reuber H4-II-E	3	31,000	106	< 2 ^c	340,400	11, 990			
V79		3,200	118	<2 ^c	637,000	< 50 ^c			
Hepatocytes ^b	4	12,800	5310	23 ^d	440,000	21,000			

TABLE 1. Activities of Xenobiotic-Metabolizing Enzymes in Cell Lines and in Rat Hepatocytes^a

^aActivities were determined in cell homogenates. Cytochrome c, benzo[a]pyrene 4,5-oxide, *trans*-stilbene oxide, 1-chloro-2,4-dinitrobenzene and 1-naphthol, respectively, were used as the substrate. n.t., Not tested. ^bFreshly isolated by the collagenase-perfusion technique from adult male Sprague-Dawley rat. ^cDetection limit.

Glatt et al. Mol Toxicol 1, 313-334, 1987

Cytochrome P450 activities in cultured human skin cell (lines) compared with human skin

Abbreviations: EROD, 7-Ethoxyresorufin O-deethylase; TBA 4-OH, Tolbutamide 4-hydroxylation; CZX 6-OH, Chlorzoxazone 6-hydroxylation; MDA 1-OH, Midazolam 1-hydroxylation; BQOD, benzyloxyquinoline O-dealkylase; NHEC, Normal Human Epithelial Keratinocytes, ; *nt*, not tested; bd, below detection; bq, below quantitation

Oesch et al. Arch Toxicol 92, 2411-2456, 2018

Non-CYP xenobiotica-metabolizing enzyme activities in cultured human skin cell (lines) compared with human skin

RELATIVE SUITABILITY OF CULTURED HUMAN SKIN CELL (LINES) COMPARED WITH HUMAN SKIN

Very tentative because of paucity of data

Arbitrary: Compared with human skin: 1-2x: Excellent; >2-3x: Good; >3-10x: Marginally acceptable; >10x: Too distant

Enzyme	NHEC	HaCaT	NCTC 2544	Keratino Sens®	LuSens	U937	THP-1
Cytochrome P450	vlt	too distant	good, but vlt	too distant	too distant	too distant	too distant
Cyclooxygenase	marg accept	too distant	too distant	nt	nt	nt	nt
ADH	nt	nt	nt	too distant	too distant	too distant	too distant
NQR	marg accept	too distant	good, but vlt	nt	nt	nt	nt
Esterase	marg accept	nt	nt	marg accept	marg accept	exc, but vlt	exc, but vlt
GST	marg accept	marg accept	marg accept	nt	nt	nt	nt
N-Acetyltransferas	e <u>exc</u>	exc	nt	too distant	too distant	too distant	too distant

Abbreviations: vlt, very little tested; marg accept, marginally acceptable; *nt*, not tested; exc, excellent; ADH, alcohol dehydrogenase; NQR, NADH/NADPH quinone reductase; GST, glutathione S-transferase; mEH, microsomal epoxide hydrolase; UDP-glucuronyltrasferase; SULT, sulfotransferase

<u>INO comparable data on mEH, UGT, SULT!</u> Oesch et al. Arch Toxicol 92, 2411-2456, 2018

Phase I xenobiotica-metabolizing enzyme activities in the human keratinocyte cell line NCTC 2544

Gelardi et al. Toxicology in Vitro 15 (2001) 701–711

Incubation time (hours)

Phase II xenobiotica-metabolizing enzyme activities in the human keratinocyte cell line NCTC 2544

GST: glutathione *S*-transferase; NQR: quinone reductase; ALDH: aldehyde dehydrogenase, substrates: propionaldehyde (PA) and benzaldehyde (BA)

Table IV. Protein content and activities of GST isoenzymes in cultures of rat liver NEC⁴

	NEC	NEC + butyrate
Protein (mg/10 ⁶ cells)	0.253	0.448
1-Chloro-2,4-dinitrobenzene	7.50	66.3
4-Hydroxynon-2-enal	5.00	20.0
trans-4-Phenyl-3-buten-2-one	0.180	0.749
Ethacrynic acid	4.75	22.0

^a **NEC, nonparenchymal epithelial cells** (from rat liver), grown in the absence or presence of 3.75 mM sodium butyrate.

Enzyme activities expressed as nmol product/min/10⁶ cells.

Utesch et al. Carcinogenesis 14, 457-462, 1993

Oxidoreductase activities in human 3D skin models compared with human skin

Abbreviations:

Oesch et al. Arch Toxicol 92, 2411-2456, 2018

Xenobiotic-metabolizing esterases and conjugases in human 3D models compared with human skin

Abbreviations: 4-MU ac, 4-methylumbelliferone acetate; Fluoresc diac; fluorescein diacetate; Vit E acetate, vitamin E acetate; CDNB, 1-chloro-2,4-dinitrobenzene; GST, glutathione Stransferase; UGT, UDP-glucuronyltransferase; SULT, sulfotransferase; PABA, para-aminobenzoic acid; NAT, N-acetyl transferase; nc, not comparable; tr, trace; nt, not tested; bd, below detection

Oesch et al. Arch Toxicol 92, 2411-2456, 2018

RELATIVE SUITABILITY OF HUMAN 3D SKIN MODELS COMPARED WITH HUMAN SKIN

Very tentative because of paucity of data

Arbitrary: Compared with human skin: 1-2x: Excellent; >2-3x: Good; >3-10x: Marginally acceptable; >10x: Too distant

Enzyme	EpiDerm™	Episkin™	Episkin [™] FTM	SkinEthik™RHE	Phenion [®] FT	StrataTest [®]	OS-REp
Cytochrome P450	exc, but vlt	good, but vlt	exc, but vlt	exc, but vlt	too distant	too distant	nt
Cyclooxygenase	marg accept	nt	nt	nt	nt	nt	nt
ADH	too distant	nt	nt	nt	nt	too distant	nt
NQR	good, but vlt	nt	exc, but vlt	marg accept	nt	nt	nt
Esterase	exc, but vlt	marg accept	good, but vlt	exc, but vlt	marg accept	marg accept	nt
GST	good, but vlt	good, but vlt	marg accept	exc, but vlt	marg accept	nt	exc, but vl
UGT	exc, but vlt	marg accept	good, but vlt	good, but vlt	marg accept	too distant	пс
Sulfotransferase	nt	nc	пс	пс	nt	nt	nt
N-Acetyltransferase	good	<u>exc</u>	<u>exc</u>	<u>exc</u>	nc	nc	nt

Abbreviations: exc, excellent; vlt, very little tested; marg accept, marginally acceptable; nt, not tested; nc, not comparable; ADH, alcohol dehydrogenase;

NQR, NADH/NADPH quinone reductase; GST, glutathione S-transferase; UDP-glucuronyltransferase

Oesch et al. Arch Toxicol 92, 2411-2456, 2018

The effect of sensitizers and non-sensitizers on CD86 expression and cytokine release from **VG-KDF-Skin**

	CD86 expression	IL-1a concentration (% of control)	IL-4 concentration (% of control)
Control	±	100 ± 8	100 ± 18
DNCB 1 mmol/l	+	133 ± 16*	140 ± 36
DNCB 2 mmol/l	+ / ++	598 ± 28***	262 ± 91*
HCA 1 mmol/l	±	108 ± 8	127 ± 34
HCA 2 mmol/l	+	256 ± 39**	150 ± 81
DNFB 0.5 mmol/l	+ / ++	181 ± 24**	270 ± 107*

DNCB, 2,4-dinitrochlorobenzene; DNFB, 2,4-dinitro furuolobenzene; HCA, a-hexyl cinnamic aldehyde; <u>VG-KDF</u>-Skin, three-dimensional human skin model composed of <u>Keratinocytes</u>, <u>Dendritic cells and Fibroblasts using collagen</u> <u>VitriGel membrane</u>

Uchino et al. Toxicol in vitro 23, 333-337, 2009

A novel in vitro test "EpiSensA" that uses reconstructed human epidermis

(RhE "LabCyte EPI-MODEL", Japan tissue Engineering, Aichi, Japan)

	EpiSensA	DPRA	KeratinoSens	h-CLAT
A. Lipophilic chemicals				
Ν	29	27	26	26
Sensitivity (%)	93	44	67	46
Specificity (%)	100	100	0	10
Accuracy (%)	93	48	62	50
B. Hydrophilic chemicals				
Ν	43	43	42	41
Sensitivity (%)	96	81	70	81
Specificity (%)	75	81	93	87
Accuracy (%)	88	81	79	83
C. Pre/pro-haptens				
Ν	11	11	11	10
Sensitivity (%)	100	55	73	80
Specificity (%)	_	_	_	_
Accuracy (%)	100	55	73	80
D. Overall				
N	72	70	68	67
Sensitivity (%)	94	63	69	64
Specificity (%)	78	83	82	88
Accuracy (%)	90	69	72	70

Protein and cyctochrome P450 content and activities of xenobiotic-metabolizing enzymes in treshly isolated rat liver parenchymal cells (PC), a rat hepatoma cell line (FAO), and different hybrid cell lines (HPCT).

]		
	FAO	Clone 1B1E3	Four further clones	PC
Protein (mg/10 ⁶ cells)	0.21 ± 0.09	0.69 ± 0.03	0.47 to 0.74	1.61 ± 0.36
Percentage	(13 ± 5)	(43 ± 2)	(29 to 46)	(100 ± 22)
P450 (nmol/ 10^6 cells)	<0.02	<0.05	<0.09	0.37 ± 0.06
Percentage	(<5)	(<5)	(<5)	(100 ± 16)
Microsomal EH (U/10 ⁶ cells) ^a	0.04 ± 0.03	0.32 ± 0.01	0.26 to 0.31	2.80 ± 0.94
Percentage	(1 ± 1)	(11 ± 0)	(9 to 11)	(100 ± 34)
Cytosolic EH (U/10 ⁶ cells) ^a	< 0.02	2.5 ± 1.1	0.2 to 6.7	23.4 ± 12.6
Percentage	(<0.1)	(11 ± 5)	(1 to 29)	(100 ± 54)
$GST (U/10^6 cells)^a$	9.6 ± 3.3	96.7 ± 18.8	60.8 to 80.0	744 ± 341
Percentage	(1 ± 0)	(13 ± 3)	(8 to 11)	(100 ± 46)
Sulphotransferase $(U/10^6 cells)^a$	< 0.01	0.04 ± 0.02	0.03 to 0.07	3.58 ± 1.30
Percentage	(<0.3)	(1 ± 1)	(1 to 2)	(100 ± 36)
UDPGT $(\overline{U}/10^6 \text{ cells})^a$	5.4 ± 2.3	25.9 ± 4.8	20.0 to 33.9	22.6 ± 7.8
Percentage	(24 ± 10)	(115 ± 21)	(88 to 150)	(100 ± 35)

Utesch et al. Xenobiotica 22, 1451-1457, 1992

Metabolic conversion of testosterone and benzo[a]pyrene in freshly isolated rat liver parenchymal cells (PC), a rat hepatoma cell line (FAO), and two hybrid cell lines (HPCT) (nmol/h per 10⁶ cells).

2 Jan 1989 - 1. 1	FAO	HPCT	PC
Testosterone	<1	5 to 20ª	386 ± 26
Percentage	(<0.3)	(1 to 5)	(100 ± 7)
Benzo[a]pyrene	1.6 ± 0.6	5.2 ± 1.9^{b}	9.0 ± 1.4
Percentage	(17 ± 7)	(58 ± 21)	(100 ± 16)

Utesch et al. Xenobiotica 22, 1451-1457, 1992

TABLE 4. Monooxygenase Activities in V79 Cells and Lines Derived from Them through Transfection of cDNA Coding for Rat P-450IA1 (XEM1, XEM2, XEM3) or P-450IIB1 (SD1)^a

	Specific activity (pm		
Cells	7-Pentoxyresorufin dealkylase	7-Ethoxycoumarin dealkylase	Arylhydrocarbon hydroxylase
V79	n.d. (<0.1)	~0.2 ^c , ~0.2 ^c	~0.2 ^c , ~0.2 ^c
SD1	33, 37, 38	n.t.	$\sim 0.2^{\circ}, \sim 0.2^{\circ}$
XEM1	n.t.	15	9, 9, 10
XEM2	n.t.	85	51, 49
XEM3	n.t.	43	20, 21
Hepatocytes, untreated ^b	10, 10, 12	36	45
Hepatocytes, Aroclor 1254-treated ^b	130, 201,193	n.t.	n.t.

n.d., not detected (detection limit in parenthesis); n.t., not tested

Glatt et al. Mol Toxicol 1, 313-334, 1987

SUMMARY

- Cells currently used in KE2 and KE3 sensitization tests posses several important xenobioticametabolizing enzymes, but lack some other important xenobiotica-metabolizing enzymes
- Despite of this shortcoming, the use of these cells surprisingly has led to apparently quite satisfactory accuracies compared with LLNA and human data
- Hence, apparently no absolute necessity for improvements, which, however, would be desirable for consumer's and companies protection for old and, especially, new compounds with new structures
- Possibilities for improvement:

S9 fortified with cofactors of all relevant enzymes

Use of co-cultures

Search for more ideal cell lines

Use of differentiation inducers

Use of 3D human skin models

Construction of hybrids

Transfection of the genes for the missing enzymes

END OF PRESENTATION

Expression of hmox1 and nqo1 mRNAs in human CD34-DC in response to various concentrations of chemicals. mRNA expression visualized on a 2% agarose gel. *Ade et al. Toxicol Sci 107: 451-460, 2009*

	Human data			LLNA data				
	Se [%]	Sp [%]	Acc [%]	n	Se [%]	Sp [%]	Acc [%]	n
2 out of 3' approach: DPRA, KeratinoSens, h-CLAT	90	90	90	101	81	83	82	103
DPRA	84	84	84	102	77	85	79	105
KeratinoSens™	82	84	82	102	74	73	74	103
h-CLAT	89	64	82	98	86	68	81	101
LuSens	78	79	79	60	73	70	71	62
(m)MUSST	74	88	78	85	71	83	75	87
LLNA	91	64	82	111	_	_	_	_

Se = sensitivity; Sp = specificity; Acc = accuracy; n = number of substances analyzed *Urbisch et al. Regul Toxicol Pharmacol, 71:337-351, 2015*

A. Conservative approach applied to ambiguous classifications:

Assign Human NC/1B as Positive

Performance vs. Human Data	"2 out of 3" DA	LLNA
Accuracy (%)	69.7	72.2
Sensitivity (%)	71.7	86.0
Specificity (%)	62.5	20.0
Balanced Accuracy (%)	67.1	53.0

B. Default to Negative approach applied to ambiguous classifications: Assign Human NC/1B as Negative

Performance vs. Human Data	"2 out of 3" DA	LLNA
Accuracy (%)	67.1	55.6
Sensitivity (%)	81.6	89.2
Specificity (%)	52.6	20.0
Balanced Accuracy (%)	67.1	54.6

OECD Supporting document for evaluation and review of draft Guideline for Defined Approaches for Skin Sensitisation 2019

Charpantier et al. Chem Biodivers 15(4), e1800013, 2018

DETAILED SUMMARY

- KeratinoSens and LuSens cells used in KE2 as well as U327 and THP-1 cells used in KE3 sensitization tests are well equipped esterase activity and with N-acetyltransferase-1 activity, enzymes of high importance in the metabolism of sensitizers
- KeratinoSens and LuSens cells used in KE2 sensitization tests in addition are well equipped with aldehyde dehydrogenase activity, but not U327 and THP-1
- Alcohol dehydrogenase activity was quantifiable only in THP-1
- The important CYP1A, 2B and 3A-depndent EROD; PROD and BROD as well as FMO and UGT activities were not detected in any of these cells
- Nevertheless, the combination of the combination of KE1, KE2 and KE3 or a 2/3 WoE approach led to satisfactory accuracies when compared with LLNA or human data
- Hence, a further improvement of xenobiotic metabolism for KE2 and KE3 cells does not appear absolutely necessary, but is desirable for protection of consumers and of producing/selling companies
- Possibilities for improvement:
 - S9 fortified with cofactors of all relevant enzymes
 Search for more ideal cell lines
 Use of differentiation inducers
 Use of 3D human skin models
 Use of co-cultures
 Construct hybrids
 - Transfect the genes for the missing enzymes

SUMMARY

- If the metabolite responsible for desired or deleterious effects is known or is reasonably presumed, models relatively close to the human skin with respect to generating and removing the responsible metabolite may be chosen. Only few models fulfill the requirements of good closeness to human skin <u>and</u> studies with several substrates comparing the activity for the same substrates with human skin:
 - For esterases: Pig: Excellent
 - For glutathione S-transferases: Rat: Good
 - For N-acetyltransferase: <u>NHEC, HaCaT, Episkin, Episkin FTM, SkinEthikRHE: Excellent</u>; EpiDerm: Good
- > If only one or two substrates tested is tentatively accepted, the following models may be included in the choice:
 - o For CYPs: Guinea pig, pig; NCTC 2544; <u>EpiDerm™</u>, Episkin[™], <u>Episkin[™]FTM</u>, SkinEthik[™]RHE
 - For ADH: Mouse, guinea pig
 - o For NQR: NCTC 2544; EpiDerm[™], <u>Episkin[™]FTM</u>
 - For esterase: <u>U937</u>, <u>THP-1</u>; <u>EpiDerm™</u>, Episkin[™]FTM, <u>SkinEthik[™]RHE</u>
 - o For GST: Pig; EpiDerm[™], Episkin[™], <u>SkinEthik[™]RHE</u>, <u>OS-REp</u>
 - o For UGT: <u>EpiDerm™</u>, Episkin[™]FTM, SkinEthik[™]RHE
 - For SULT: <u>Rat</u>

Fragrance substances that have been experimentally shown to act as prehaptens and/or prohaptens

Fragrance	Activation by air	Bioactivation
Substance	oxidation	(oxidation)
Cinnamyl alcohol	Yes	Yes
Eugenol	No	Yes
Geranial	Yes	Νο
Geraniol	Yes	Yes
Isoeugenol	Νο	Yes
Limonene	Yes	Νο
Linalool	Yes	Νο
Linalyl acetate	Yes	Νο
α-Terpinene	Yes	Yes

Karlberg et al. Contact Dermat 69, 323-334, 2013

Glatt et al. Cancer Res 41, 270-277, 1981

BP - 9,10 - DIHYDRODIOL (µg/plate)

Fig. 1. A, Recombinant plasmid pUC19/ 450IA1 containing full length P-450IA1 cDNA, as obtained from the cDNA library. B, Ethidium bromide-stained DNA fragments generated by *BamHI/PstI* digestion of pUC19/450IA1, electrophoretically separated on 0.7% agarose. *Lane 1*, λ DNA *Hind*III fragments as size markers; *lane 2*, pUC19/450IA1 *BamHI/PstI* fragments.

SATISH DOGRA, JOHANNES DOEHMER, HANSRUEDI GLATT, HORST MÖLDERS, PETER SIEGERT, THOMAS FRIEDBERG, ALBRECHT SEIDEL, and FRANZ OESCH Mol Pharmacol 37, 608-613, 1990

Fig. 2. Recombinant plasmid pSV450IA1 as used for gene transfer into V79 cells.

SATISH DOGRA, JOHANNES DOEHMER, HANSRUEDI GLATT, HORST MÖLDERS, PETER SIEGERT, THOMAS FRIEDBERG, ALBRECHT SEIDEL, and FRANZ OESCH Mol Pharmacol 37, 608-613, 1990

Enzymatic activity in V79, XEM1, XEM2, and XEM3 cells and hepatocytes of untreated Sprague-Dawley rats

Colle	Specific activity		
Cens	7-Ethoxycoumarin	AHH	
	pmol · mg ⁻¹ · min ⁻¹		
V79	<0.2	<0.2	
XEM1	15.2	9.5	
XEM2	84.2	50.2	
XEM3	43.4	21.3	
Hepatocytes from untreated rats	39.3	45.0	

SATISH DOGRA, JOHANNES DOEHMER, HANSRUEDI GLATT, HORST MÖLDERS, PETER SIEGERT, THOMAS FRIEDBERG, ALBRECHT SEIDEL, and FRANZ OESCH Mol Pharmacol 37, 608-613, 1990

Sensitivity (%)	TP : (TP + FN) x 100
Specificity (%)	TN : (TN + FP) x 100
Positive predictive value (%)	TP : (TP + FP) x 100
Negative predictive value (%)	TN : (TN + FN) x 100
Accuracy (%)	(TP + TN) : (TP + FP + TN + FN) x 100

CONSEQUENCES OF SKIN TREATMENT WITH NEVIRAPINE

Human	Rat	Mouse
Formation of reactive sulfate	Formation of reactive sulfate	No formation of sulfate
Covalent binding to skin protein	Covalent binding to skin protein	No covalent binding to skin protein
Severe skin rash	Severe skin rash	No skin rash
All abolished by SULT inhibitor	All abolished by SULT inhibitor	No effect of SULT inhibitor

Data from Sharma et al. *Chem. Res. Toxicol.* 2013, 26: 410–421 and Sharma et al. *Chem. Res. Toxicol.* 2013, 26: 817–827

Published in: Daniel Urbisch; Matthias Becker; Naveed Honarvar; Susanne Noreen Kolle; Annette Mehling; Wera Teubner; Britta Wareing; Robert Landsiedel; Chem. Res. Toxicol. DOI: 10.1021/acs.chemrestox.6b00055 Copyright © 2016 American Chemical Society Mechanism of action of terpenes and hydroperoxides on THP-1 cells.

Mechanism of action of terpenes and hydroperoxides on THP-1 cells.

Toxicological Sciences, Volume 161, Issue 1, January 2018, Pages 139–148, https://doi.org/10.1093/toxsci/kfx207

The content of this slide may be subject to copyright: please see the slide notes for details.

Non-CYP-mediated oxidoreductase activities^a in skin of various mammalian species

Model substrate (for)	Human	Rat	Mouse	Guinea pig
Ethanol (ADH)	0.3-0.4	2.06	1.1-1.2	0.6
2,6-Dichlorophenolindophenol (NQR)	~375	nt	nt	23.4 - 159

^a nmol product/mg cytosolic protein/min

Abbreviations: ADH, alcohol dehydrogenase; NQR, NADH/NADPH quinone reductase; nt, not tested

Esterase activities in skin of various species compared with human

Microsomal epoxide hydrolase activities in skin of various species compared with human

GENOTOXICITY TEST RESULTS

	Ames	MN/CA	Comet
2,5-Diaminotoluene	pos	pos	pos
2-Acetyl-2,5-diaminotoluene	neg	nt	neg
5-Acetyl-2,5,diaminotoluene	neg	nt	neg
2,5-Diacetyl-2,5-diaminotoluene	neg	nt	neg
Para-phenylenediamine	pos	pos	pos
Acetyl-para-phenylenediamine	neg	neg	neg
Diacetyl-para-phenylenediamine	neg	neg	neg
4-Amino-2-hydroxytoluene	neg	pos	pos
4-Acetylamino-2-hydroxytoluene	nt	neg	neg

Abbreviations: MN, micronucleus; CA, chromosome aberration; pos, positive; neg, negative; *nt*, not tested. Data from Garrigue et al. *Mutat. Res*. 608: 58–71, 2006 and from Zeller and Pfuhler *Mutagenesis* 29: 37-48, 2014

RELATIVE SUITABILITY OF SKIN OF VARIOUS SPECIES AS MODEL FOR HUMAN SKIN

Very tentative because of paucity of data

Arbitrary: Compared with human skin: 1-2x: Excellent; >2-3x: Good; >3-10x: Marginally acceptable; >10x: Too distant

Enzyme	Rat	Mouse	Guinea Pig	Pig
СҮР	marginally acceptable	too distant	good, but vlt	good, but vlt
Non-CYP OxRed: ADH	marginally acceptable	good, but vlt	excellent, but vlt	nt
NQR	nt	nt	marginally acceptable	nt
Esterase	too distant	nt	nt	<u>excellent</u>
mEH	too distant	marginally acceptable	nt	nt
GST	good	too distant	nt	good, but vlt
UGT	nt	too distant	nt	nt
Sulfotransferase	excellent, but vlt	nt	nt	nt
N-Acetyltransferase	marginally acceptable	nc	nt	nt

Abbreviations: **vlt, very little tested**; ADH, alcohol dehydrogenase; NQR, NADH/NADPH quinone reductase; *nt*, not tested; mEH, microsomal epoxide hydrolase; GST, glutathione S-transferase; UGT, UDP-glucuronyltrasferase; *nc*, not comparable