Some views on the prehapten paradigm...

Prof. Jean-Pierre Lepoittevin University of Strasbourg

IDEA pre- and pro-haptens Workshop Brussels, October 16-17, 2019

Université de Strasbourg

Allylic hydroperoxides are formed at air exposure...

From Johanna Rudbäck's Thesis, Gothenburg University, 2014

Allylic hydroperoxides derived from terpenes (mono-, sesqui- and di-) are potent skin sensitizers...

S. Johansson et al. Chem. Res. Toxicol. 2008, 21, 1536–1547

Exposure to allylic hydroperoxides can induce occupational "Allergic Contact

The "turpentine story"

- Occupational exposure has been reported in painters, varnishers and in the ceramic industry since the 30's,
- Contact allergy was found to be correlated to the presence of Δ -3-carene in turpentine oil (French vs Swedish),
- $\hfill\square$ Contact allergy was found to be correlated to the oxidation state of Δ -3-carene (pure vs oxidized),
- On 100 patients sensitized to turpentine, 25 reacted to concentrations of ∆-3-carene hydroperoxide lower than 50 ppm among which 9 reacted to concentrations lower than 10 ppm (down to 1 ppm).

U	n	i	versité					
			de Stra	S	Ŀ	00	u	rg

- Allylic hydroperoxides degrade, through the formation of radicals, into secondary oxidation products...
 - that are sometimes haptens (ascaridol),
 - that are sometimes weak sensitizers or non-sensitizers (limonene).

U	n	i						
			de Stra	S	Ŀ	00	u	rg

Radicals are also formed in the epidermis following exposure to allylic hydroperoxides:

Radicals are also formed in the epidermis following exposure to allylic hydroperoxides:

3) Acquisition

Kuresepi *et al. Free Radic Res* **2018**, 52, 171 Sahli *et al. Arch Toxicol* **2019**, 93, 1337; *Free Radic Res* **2019**, 53, 737

U	n	İ	versité					
			de Stra	S	Ŀ	0	u	rg

Lim-1-00H:

••• What do we ignore?

- Can radicals derived from hydroperoxides significantly modify epidermal proteins to induce sensitization?
- Is the Adverse Outcome Pathway for skin sensitization developed for haptens fully relevant for prehaptens?

U	n	i	versité					
de Str					Ŀ	00	U	rg

Toxicity pathway

of activated

Université

de Strasbourg

T-cells

In silico toxicokinetics

Keratinocytes

Co-stimulatory adhesion molecules

Adverse Outcome Pathway (AOP)

• • • What happen *in situ*?

- Non invasive approach,
- Identification and quantification of adducts,
- High-Resolution
 Magic Angle
 Spinning
 (HRMAS) NMR.

Methyl methanesulfonate

Methyl methanesulfonate

• • • Quantitative HRMAS on RHE

Concentrations of methyl signals [0.4M] as a function of time expressed in nmol/mg of RHE

Time	MMS	¹³ CH ₃ - OH	His	Asp/G Iu	Met	Lys	Cys	Total adducts
1h	9.2	0.3	2.1	0.5	0.3	ND	1.8	4.7
2h	4.5	0.4	1.6	0.6	0.5	ND	2.0	4.7
4h	2.5	0.6	2.2	0.8	0.5	0.5	2.3	6.2
8h	1.9	0.9	1.9	0.9	0.4	0.5	2.0	5.8
24h	0.6	1.1	1.5	0.7	0.4	0.4	0.6	3.7

Quantitative HRMAS on RHE

Conc. of methyl adducts [0.4M] as a function of time

• • • Quantitative HRMAS on RHE

Concentrations of methyl signals (8h of exposure) expressed in nmol/mg of RHE as a function of applied [conc].

	MMS	¹³ CH ₃ - OH	His	Asp/G Iu	Met	Lys	Cys	Total
0.2	0.6	0.3	1.3	0.4	0.5	0.3	1.0	3.5
0.4	1.6	2.4	2.1	0.8	0.5	0.6	2.1	6.0
0.6	1.8	2.7	2.8	0.9	0.9	0.6	1.9	7.0
0.8	4.6	4.5	4.5	1.6	1.8	1.1	2.3	11.3
1	5.7	6.5	6.5	2.4	2.2	1.4	2.1	14.7

• • • Quantitative HRMAS on RHE

Concentrations of methyl signals (8h of exposure) expressed in nmol/mg of RHE as a function of applied [conc].

Quantitative HRMAS on RHE

Adducts formed in RHE after 8h of incubation as a function of increasing doses of (13C)MMS

• • • Adverse Outcome Pathway...

KE1, as defined in the AOP for skin sensitization, seems relevant for haptens directly reacting with nucleophiles,

A significant amount of adducts (between 2-12 nmol/mg of RHE in relation with the concentration of exposure) is formed in the epidermis,

This is in good agreement with DPRA data showing a parallel relation between the reactivity and the potency.

Reactivity of a prehaptens in RHE

- *p*-Phenylenediamine [106-50-3]
 - EC₃ = 0.16
- Direct Peptide Reactivity Assay
 - Pep-Cys = 93.0 +/- 6.8
 - Pep- Lys = 23.5 +/- 0.9

Université								
			de Stra	S	Ŀ	00	u	rg

1,4-phenylenediamine (PPD)

Subjected to oxidation and epidermal metabolism

• • 1,4-phenylenediamine (PPD)

RHE were treated with 30µL of PPD (O.8 M in acetone) and incubated for various time periods: 1h, 8h, 24h, 48h.

RHE

30 µl, 0.8 M

 NH_2

Incubation (37 ° C, 5%CO₂) ≠ times

Modified RHE

Behavior of 1,4-(¹³C)PPD in RHE

Absolute concentrations of the remaining 1,4-(¹³C)PPD in RHE with time calculated using 1D HMBC

	1,4- (¹³ C)-PPD (nmol/mg of RHE)	
1 h	19	b b c c c c c c c c
8 h	1.4	ou b c c c c c c c c
24 h	0.8	
48 h	0.1	Incubation time (h) Université
	1	27 de Strasbourg

Absolute concentrations in RHE with time calculated using 1D HSQC NMR

Concentrations with time expressed in nmol/mg of RHE after exposure to a solution [0.4M]

	Histidine- ¹³ CH ₃	Methionine- ¹³ CH ₃	Lysine- ¹³ CH ₃	Cysteine- ¹³ CH ₃		H 13C 7.8 ppm 159 ppm
					1 h	4.8
1h	2.09	0.33		1.77		
8h	1.95	0.41	0.49	2.04	2 h	3.2
24h	1.51	0.38	0.37	0.65	8 h	1.3

U	ni					
31		de Stra	sl	00	u	rg

• • • Adverse Outcome Pathway...

- KE1, as defined in the AOP for skin sensitization, seems non-relevant for PPD, a prehapten needing to be oxidized to become reactive,
- A very low amount of adducts is formed in the epidermis,
- There is no parallel relation between the reactivity and the potency,

• • Adverse Outcome Pathway...

- All prehaptens have in common to form oxidative chemicals once activated,
- Could, for such chemicals, a low amount of adducts be sufficient to induce sensitization?
- Shall we change of paradigm for this sub-category of skin sensitizers?

Acknowledgments

- Dr Eric MOSS
- Dr Marie BETOU
- Dr Hassan SROUR
- Dr François-Marie MOUSSALLIEH
- Dr Valérie BERL
- Dr Elena GIMENEZ-ARNAU
- Dr Karim ELBAYED
- Prof. A-T KARLBERG

Région Alsace
RIFM
Cosmetics Europe
Centre National de la Recherche Scientifique
Université de Strasbourg

U	n	i						
			de Stra	S	Ŀ	00	u	rg