Skin xenobiotic metabolism and review of structural consideration

Prof. Jean-Pierre Lepoittevin University of Strasbourg

IDEA pre- and pro-haptens Workshop Brussels, October 16-17, 2019

Université de Strasbourg

Activated by skin metabolism...

Reactive metabolites...

U	n	i	versité					
			de Stra	S	Ŀ	00	u	rg

Liver metabolism...

Skin metabolism...

Metabolism of xenobiotics

Main enzymatic systems identified in Human epidermis...

		Cytochromes P450 (CYPs)	1A1/1B1, 2B6/2E1, 3A5/3A7
EC 1	Ovudoroductococ	Alcohol / Aldehyde deshydrogenases (ADH / ALDH)	EC 1.1.1.1 / EC 1.2.1.3
ECI	Oxydoreduciases	Peroxidases	EC 1.11.x
		Catechol-O-methyl transferases (COMT)	EC 2.1.1.6
		N-acetyltransferases (NAT)	EC 2.3.1
EC 2	Transferases	Glucuronosyltransferases (UGT)	EC 2.4.1.17
		Glutathion S-transferases (GST)	EC 2.5.1.18
		Sulfotransferases (SULT)	EC 2.8.2.x
EC 3	Hydrolases	Esterases (ES)	EC 3.1.x

Eilstein et al. Arch. Toxicol. 2014, 88, 1681–1694

Mono-oxygenases in the skin

- **CYP 1-4 are involved in the metabolism...**
- All « liver » CYP have not yet be found in the skin...
- CYP 1A1 responsible for the metabolism of aromatic rings (immuno-histochemistry)
- CYP 2B1 and CYP 2B6 responsible of dealkylation (ARN-messenger)
- CYP 2B12 responsible of lipid epoxidation

Hydroxylation of aromatic systems

Epoxidation

Deamination

O-Dealkylation

• • Flavin monooxygenases (FMO)

- Involves into the oxidation of nitrogen, sulfur and phosphorus atoms...
- A competition can exist between CYPs and FMOs...
- The CYP/FMO ratio varies from one organ to another one
 - Liver: 85% CYP / 15% FMO
 - Skin: 33% CYP / 66% FMO

U	n	i	versité					
			de Stra	S	Ŀ	00	u	rg

• • • Flavin monooxygenases (FMO)

Oxidation of amines

Oxidation of thiols

de Strasbourg

Alcohol and aldehyde dehydrogenases (ADH et AIDH)

- Oxido-reduction systems present in many organs...
- Oxidation of alcohols into aldehydes or ketones...
- Source of oxidant: NAD⁺ co-factor...
- 5 classes of ADH have been identified and 3 expressed in the skin at the protein level

U	Université							
			de Stra	S	Ŀ	0	u	rg

• • • • Example of pro-haptens that can be activated by ADH...

U	ni	versité					
		de Stra	S	Ŀ	00	U	rg

Contact Dermatitis, 1998, 39, 293–303 Printed in Denmark . All rights reserved Copyright © Munksgaard 1998 CONTACT DERMATITIS ISSN 0105-1873

Fragrances and other materials in deodorants: search for potentially sensitizing molecules using combined GC-MS and structure activity relationship (SAR) analysis

S. C. RASTOGI¹, J.-P. LEPOITTEVIN², J. D. JOHANSEN³, P. J. FROSCH⁴, T. MENNÉ³, M. BRUZE⁵, B. DREIER⁴, K. E. ANDERSEN⁶ AND I. R. WHITE⁷

¹Department of Environmental Chemistry, National Environmental Research Institute, Roskilde, Denmark; ²Laboratoire de Dermatochimie associé au CNRS, Université Louis Pasteur, Strasbourg, France; ³Department of Dermatology, Gentofte Hospital, University of Copenhagen, Denmark; ⁴Department of Dermatology, Der Städtische Kliniken, Dortmund, and University of Witten/ Herdecke, Germany; ⁵Department of Occupational Dermatology, University Hospital, Malmö, Sweden; ⁶Department of Dermatology, Odense University Hospital, Denmark; ⁷St. John's Institute of Dermatology, London, UK

U	n	i	versité					
			de Stra	S	Ŀ	00	u	rg

- 71 deodorants (spray and roll-on) were analyzed by GC-MS...
- 226 molecules were identified...
- 84 molecules were found to contain at least one strutural alert...
- These molecules can be grouped into 9 main chemical families...

Contact Dermatitis, **1998**, *39*, 293-303

U	n	İ	versité					
			de Stra	S	Ŀ	00	U	rg

Identified strutures

Identified structures

Identified structures

Among 84 molecules containing at least one structural alert, 70 were included in the « aldehyde, ketone or α,β unsaturated aldehyde and ketone » family ... or can be converted into an « aldehyde, ketone or α,β unsaturated aldehyde aldehyde and ketone » ...

Liver vs skin...

Highly reactive intermediates...

• • • What happen *in situ*?

 Direct observation...
Non invasive approach...
Problem of a complex environment...

• • • HRMAS NMR

High-Resolution Magic Angle Spinning "HRMAS" Nuclear Magnetic Resonance...

- Bring to zero inhomogeneity associated with the sample...
- Well adapted to soft solids...

Is it possible to follow and quantify *in situ* the toxication/detoxication balance of chemicals in Reconstructed Human Epidermis ?

de Strasbourg

ι	Jn	i	versité					
			de Stra	S	Ŀ	00	U	rg

	H 13 N Lysine 7.8 ppm 159 ppm	H OH 13C 0 7.4 ppm 144 ppm	H 6.87 ppm 155 ppm	¹³ C OH 4.29 ppm 65 ppm	Cysteine S 9.58 ppm 201 ppm
30 mn	6.1	1.25	144	0.4	6.8
1 h	4.8	0.62	34.2	0.7	5.1
2 h	3.2	0.91	4.6	0.3	2.6
8 h	1.3	0.47	—	0.2	0.7

NB: Cinnamic acid detected in the culture medium (concentration: 0.42 nmol/mg)

U	Université							
			de Stra	S	b	0	u	rg

U	n	i	versité					
			de Stra	S	b	0	u	rg

Conclusions/Perspectives...

- The detoxication/toxication balance as well as the reactivity of skin sensitizers can be observed and quantified *in situ*,
- Chemical reactions in RHE were found much faster than in solution (hours vs days),
- Most prohaptens are identified by alternative methods: Regul Toxicol Pharmacol, 2016, 82, 147-155.

Acknowledgments

- Camille DEBEUCKELAERE
- Dr Eric MOSS
- Dr Marie BETOU
- Dr François-Marie MOUSSALLIEH
- Dr Valérie BERL
- Dr Elena GIMENEZ-ARNAU
- Dr Karim ELBAYED

 Plateforme CARMEN / ICube
Région Alsace
RIFM
Cosmetics Europe
Centre National de la Recherche Scientifique
Université de Strasbourg

