The RIFM sensitization research projects have focused on New Approach Methodologies (NAMs)

RIFM ensures the safe use of fragrance materials through our safety assessment program

Our staff works on two complimentary scientific endeavors to bring the best science to fragrance material safety

The RIFM sensitization research projects have focused on NAMs to identify sensitization potency

The main focus of the RIFM skin sensitization research is developing alternatives to animal testing and determining potency

Dermal Sensitization Threshold (DST) identifies an exposure below which there is no appreciable risk for the induction of skin sensitization for an untested chemical

- RIFM collaborated with R Safford and D Roberts to extend DST for reactive chemicals and identify high potency chemicals
 - Safford, R.J., Api, A.M., Roberts, D.W., Lalko, J.F., 2015. Extension of the Dermal Sensitisation Threshold (DST) approach to incorporate chemicals classified as reactive. Regulatory Toxicology and Pharmacology, 72, 694-701.
 - Roberts, D.W., Api, A.M., Safford, R.J., Lalko, J.F., 2015. Principles for identification of High Potency Category Chemicals for which the Dermal Sensitisation Threshold (DST) approach should not be applied. Regulatory Toxicology and Pharmacology, 72, 683-693
- RIFM currently collaborating with scientists at Kao to develop a DST for high potency chemicals

RIFM is leading the effort in combining multiple in vitro methods to predict skin sensitization potency

Reliable animal and human data are required for appropriate in vitro data evaluation and predictive models

Api, 2014	Correlation of human and LLNA induction thresholds	In Progress	Correlation of humand and LLNA induction thresholds Part II
Api, 2017	Skin sensitization potency categorization based on human data	In Progress	Compilation of RIFM conducted HRIPTs
		In Progress	Pilot study on the new HRIPT protocol
		In Progress	Skin sensitization potency re- categorization
		In Progress	Comparison of re-categorized skin sensitization potency and SENS-IS data

Skin sensitization potency re-categorization incorporates more than just human data

Re-Categorization

Test material id

discrete chemical or mixture?
stabilizer information

Human data

- LOELs where available - the highest NESIL - other HRIPT, hMAX LOEL

Chemistry Predictions - OECD Toolbox - OASIS TIMESS

In vitro data

- DPRA, PPRA
- KeratinoSens, h-CLAT - SENS-IS

Diagnostic patch test

Exposure data

exposure model

- Creme-RIFM aggregate

Other in vivo data

- guinea pig studies

Ranges were modified for the re-categorization

Category Name	LLNA (µg/cm²)	Basketter (µg/cm²)	Modified Basketter (μg/cm ²)		
Extreme	<25	<25	<25		
Strong	25 - 250	25 - 500	25 - 500		
Moderate	250 - 2,500	500 - 2,500	500 - 2 <i>,</i> 500		
Weak	2,500 - 25,000	2,500 - 10,000	2,500 - 5,000		
Very Weak		> 10,000	>5,000		
Non Sensitizer		Negative			

We went through this exercise for 75 materials and categories for 22 materials were changed

			HRIPT				HRIPT	HRIPT	LLNA	DPRA	PPRA	KeratinoS ens	h-CLAT	SENS IS	ToolBox	TIMESS	TIMESS
	CAS Number	Chemical Name	Category Range (Api, 2017)	Category Name (modified Api,2017)	Category Range (μg/cm ²) (modified Api,2017)	Human Categorization Notes (2017 vs 2019 difference)	NESIL (μg/cm²)	LOEL (µg/cm2)	LLNA	DPRA	PPRA	KeratinoS ens	h-CLAT	SENS-IS	Protein binding alerts for skin sensitization by OASIS	Parent Prediction	Metabolite Prediction
1	6728-26-3	Hexen-2-al	25 - 500		, - `		24	236	1012 [2]	Strong	HR			rong	Michael Addition	Strong sensitiser	Non sensitiser
2	3658-77-3	4-Hydroxy-2,5- dimethyl-3(2H)- furanone	500 - 2,50		5		590	1181	450	Strong	HF	-	22	ak	No alert found	Non sensitiser	Weak sensitiser
3	122-03-2	Cuminic Aldehyde	2,500 - 10,000	ma	terials	rate - *NESIL no effect level ot THE no effect level (LLNA (SI = 2.0 @ 10%) and HMAX (2760))	1100*	n/a	>2500	Low		ma	teria	IS oderate	Schiff Base	Weak sensitiser	Weak sensitiser
4	68991-97-9	1,2,3,4,5,6,7,8- Octahydro-8,8- dimethyl-2- naphthaldehyde	500 - 2,500	Moderate	500 - 2,500		550	n/a	1050	Minimal	MR	Negative	Positive	Non- sensitizer	Schiff Base	Weak sensitiser	Weak sensitiser
5	1885-38-7	Cinnamyl nitrile	500 - 2,500	Moderate	500 - 2,500		1060	1938	>2500	Minimal	MR	Positive	Positive	Moderate	No alert found	Non sensitiser	Strong sensitiser
6	123-11-5	p- Methoxybenzaldeh yde	2,500 - 10,000	Weak	2,500 - 5,000		3,500	4,700	>6250	Moderate	R	Negative	Positive	Weak	No alert found	Non sensitiser	Non sensitiser
7	18794-84-8	β-Farnesene	2,500 - 10,000	Weak	2,500 - 5,000	Mixture of isomers; with BHT	3,700	6350	>7500	Minimal	R	Positive	Positive	Non- sensitizer	No alert found	Non sensitiser	Weak sensitiser
8	100-51-6	Benzyl alcohol	2,500 - 10,000	Very weak*	>5,000	Top use categories: Facial scrubs, EDP/EDT	5,900	8,858	>12,500	Minimal	R	Positive/N egative	Positive	Weak	No alert found	Non sensitiser	Non sensitiser
9	54464-57-2	1-(1,2,3,4,5,6,7,8- Octahydro-2,3,8,8- tetramethyl-2- naphthalenyl)ethan one (OTNE)	> 10,000	Very weak	> 5,000	Do we consider NS?	47,000	n/a	3783 [3]	Strong/Lo w	MR	Negative	Positive	Weak	Nucleophillic Addition	Weak sensitiser	Weak sensitiser

Multiple sources of information are used when evaluating a fragrance material

H			
Phys-chem, Reactivity, Absorption & Metabolism, In silico tools	In chemico In vitro studies	Mouse and Guinea pig Studies	Human data
OECD QSAR Toolbox	<u>DPRA (</u> KE 1)	Local Lymph Node Assay (KE 4)	<u>Human Repeated</u> Insult Patch Test
TIMES-SS DEREK NEXUS	<u>KeratinoSens</u> ™ <u>hCLAT</u> (KE 2 + 3)	<u>GP Maximization Test</u> <u>GP Buehler Test</u> (AO)	<u>(HRIPT)</u> (AO)
Toxtree, SAM	PPRA, kDPRA, U-Sens™, Sens-IS®	GP: OET, CET, FCAT, DT	H-Maximization test
		Mouse ear swelling test	Diagnostic Patch tests

In vitro data in Safety assessment

0	KE-1	KE-2	KE-3	KE-4	Adverse Outcome	
Phenylacetaldehyde	DPRA % depletion	Keratino Sens™ µM	h-CLAT µg/ml EC150 (CD86) and EC 200 (CD54)	LLNA [# of studies]	HRIPT µg, LOEL	/cm² NOEL
(CAS# 122-78-1)	C= 60.7% K = 22.63%	EC1.5 = 28.5	EC150 = 17.30; EC 200 = 13.00	962 [2]	1181	591
2-Phenylpropionaldehyde (CAS# 93-53-8)	C = 26.59 K = 5.1	EC1.5 = 111.6	EC150 = 38.20; EC 200 = 44.50	1575 [1]	1938	388

When the fragrance material cinnamyl acetate was being reviewed the first step in the process was to evaluate all the data on the material

103-54-8 Cinnamyl acetate

Animal Data	Human Data	In-vitro	In-silico prediction	Clears reactive DST?	details of the reactivity prediction>	Protein binding alerts for skin sensitization by OASIS Toolbox 4.3.1	Protein binding alerts for skin sensitization by OASIS, with Autoxidation simulator Toolbox 4.3.1	Protein binding alerts for skin sensitization by OASIS, with Skin metabolism simulator Toolbox 4.3.1	Parent Predicted SkinSens (TIMES)	Metabolite Predicted SkinSens (TIMES)	Toxtree 3.1.0
No Data	Neg hMAX @5%	Neg DPRA, Neg h-CLAT	Reactive	No		SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and thioesters	SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and thioesters	SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and thioesters; No alert found; SN2 >> Ring opening SN2 reaction >> Epoxides, Aziridines and Sulfuranes	Weak sensitiser	Strong sensitiser	Acyl Transfer; Michael Acceptor; SN2

The next step was to evaluate all the structurally related materials

The structurally related materials needed to be refined

This was the final cluster of materials to be considered based on chemical predictivity and expert

judgement

17

The data on the structurally related materials confirmed this cluster can be used – no positive data

CAS	Name	Structure	Animal Data	Human Data	In-vitro	In-silico prediction	Clears reactive DST?
104-65-4	Cinnamyl formate	ر م ا		Neg hMAX @ 4%		Reactive	No
103-54-8	Cinnamyl acetate			Neg hMAX @5%	Neg DPRA, Neg h- CLAT	Reactive	No
103-56-0	Cinnamyl propionate	H ₃ C 0 M		Neg hMAX @ 4%		Reactive	No
103-61-7	Cinnamyl butyrate	H ₃ C 0 Mu		Neg hMAX @ 4%		Reactive	Yes

A confirmatory HRIPT was conducted on cinnamyl acetate because it was the most reactive in the cluster

CAS	Name	Structure	Animal Data	Human Data	In-vitro	In-silico prediction	Clears reactive DST?	Safety Assessment
104-65-4	Cinnamyl formate	° [™] [™]		Neg hMAX @ 4%		Reactive	No	Safe under the current use level
103-54-8	Cinnamyl acetate	H° C C C C C C C C C C C C C C C C C C C		Neg HRIPT @ 2.9% (3424); Neg hMAX @5%	Neg DPRA, Neg h-CLAT	Reactive	No	Safe under the current use level
103-56-0	Cinnamyl propionate	H ₃ C 0 M		Neg hMAX @ 4%		Reactive	No	Safe under the current use level
103-61-7	Cinnamyl butyrate	H ₃ C 0 Mu		Neg hMAX @ 4%		Reactive	Yes	Safe under the current use level