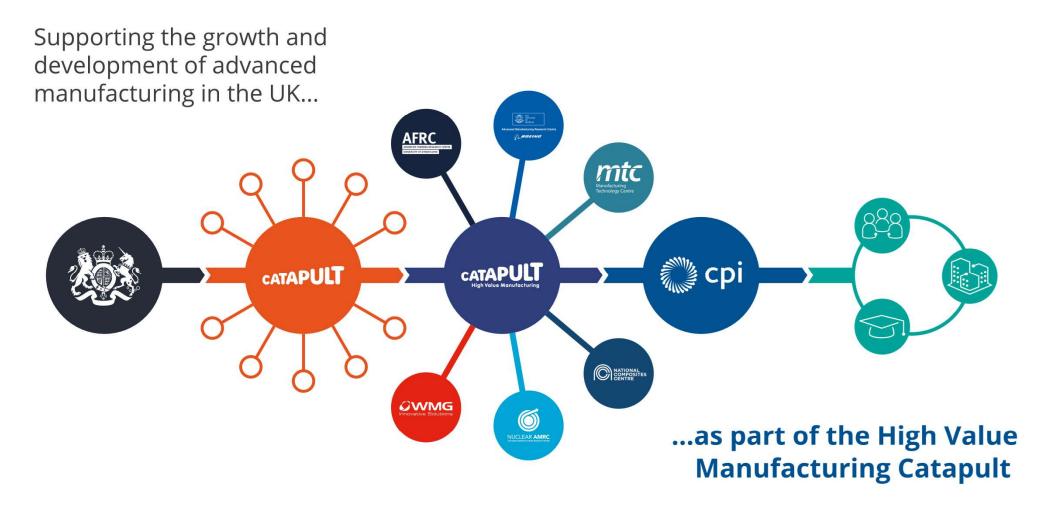
CPI Battery Capability and Case Studies

Robert Mitchell

Principal Scientist – Energy Materials


Copyright © 2022 Centre for Process Innovation Limited trading as CPI. All rights reserved.

We help companies to develop, prove, scale-up and commercialise new products and processes



We help deliver, de-risk and accelerate...

...your concepts into successful products

...using our integrated innovation services

Industry relevant expertise and assets

Delivering product development, proof of concept, and scale-up services.

Expertise in securing funding for partners and clients

Enabling the right partnerships, connections, and funding routes at the right time.

Knowledge and application of innovation processes

Business services and consultancy to reduce risk and speed up time to market.

Fee for service

- **One-to-one** project with CPI
- Flexible scope and project size
- **Rapid initiation** of projects
- Can encompass a range of services including business and innovation support, consultancy, and lab-based projects

Offers flexibility and speed

Collaborative projects

- **One-to-one** with CPI or together with a **larger consortium**
- Projects initiate after completion of a **detailed funding protocol**
- We offer a bespoke service for bid development and grant landscape navigation

Funded SME support

- Smaller projects may qualify for **total funding** status from ERDF programmes
- Regional limitations can
 apply to supporting SMEs

Best option for highly innovative projects you can't fully fund yourself

Great mechanism for an initial engagement with us

Proof of concept and scale-up

to prove the feasibility of your new ideas before approaching investors, stakeholders, or funding programmes

Reduce risk

by helping prove and refine your novel technologies before investing further in new facilities and equipment

by providing access to proven demonstration assets and industry expertise

Battery Materials Capabilities at CPI

We can accelerate Battery Technology development

Materials

- Development support in scalable processes for existing and nextgeneration electrode materials, including solid-state batteries and the recovery of high-value battery electrode materials
- Surface engineering of materials and structures to maximise performance

Formulation

- Utilise high-throughput experimentation to screen and optimise new and existing chemistries
- Processing with a wide range of mixing technologies to maximise performance from grams to kilograms
- Optimise the evaporation and drying of slurries

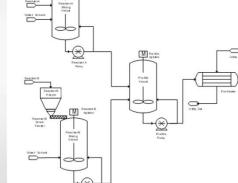
Coating and Stucturing

- Wet coating and vacuum coating process development and optimisation (e.g. slot die, ALD)
- Photonic and plasma processing for improved surface adhesion and increased efficiency
- Optimisation of electronic structures and interfaces to obtain the maximum benefits in electrode performance

Sensors

- Developing Integrated and multifunctional smart sensors for high-value battery management solutions
- Distributed solutions to enable individual cell monitoring
- Embedding intelligent sensors in cells to better inform second-life applications

Scale Up Evaluation


Scale-up Development and Validation

- Understand process chemistry
- Make lab scale process more robust, scalable, safer
- Investigate batch to continuous processing

Process Analytical Techniques (PAT)

- Understand key process parameters
- Generate lab data to inform plant design
- Understand and control product quality
- Soft sensor development

Commercial Plant

• Mass and Energy

Balance

• Process Flow Diagram

• Key risks identified with

suggested mitigations

Process Economics

(Capex, Opex)

Preliminary

Design

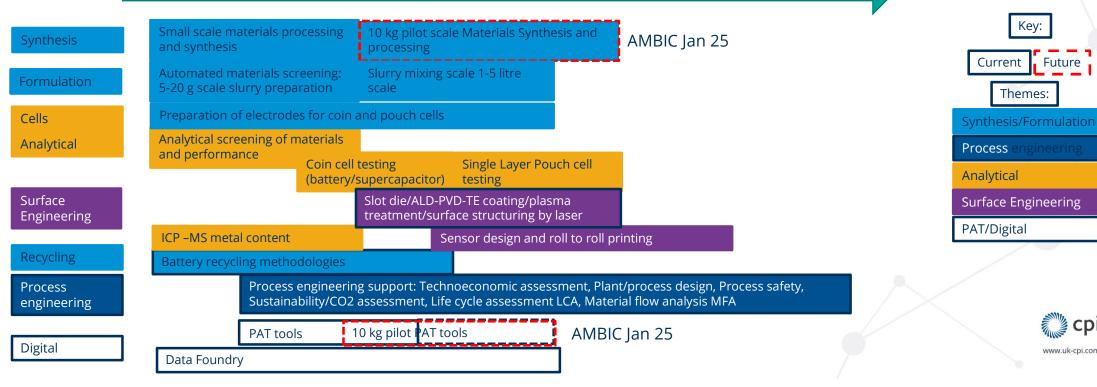
Polyester Resin Solution, <30% G Safety Data Sheet According to Regulation (EC) No. 1907/2006 (REACH) with its amendment Date of issue:16/04/2018 Revision 1

8.2 Exposure controls

Protective equipment

There is no one glove material or combination of materials that will give unlimited chemicals. The breakthrough time must be greater than the end use time of the prod by the glove manufacturer on use, storage, maintenance and replacement must be

Safety and Sustainability


- Chemical Safety (COSHH, CHA, MSDS etc)
- Process Safety (HS2, HAZOP etc)
- Life Cycle Analysis

Lk-cpi.com

CPI Battery capabilities and respective TRL

Increasing technology readiness level

- Support CPI can offer partners to develop battery processes
- Dates where • listed indicate when likely to come online

Key:

Current Future

Themes:

CD

www.uk-cpi.com

CPI Formulation system

Automated preparation of battery slurries & syringe transfer into suitable format for drawdown – ambient conditions

Safe handling of toxic and nanomaterial powders ensured *via* a dedicated, HEPA filtered glove box enclosure, which links into main robot system

20-40 + formulations per day at 10-40 g scale.

Increase in throughput and reproducibility vs manual preparation.

Supporting equipment (Process)

High throughput experimentation: Battery formulation, Materials compatibility testing, screening leachates for hydrometallurgy processes

Comminution: Milling/grinding and sieving of materials. Dry or wet and options for inert milling.

Pyrolysis: Moderate temperature processing (1200 °C). In air or inert atmosphere.

Argon glovebox: Inert handling of materials

Stirred tank reactors: Scalable processing and synthesis of materials. Handling black mass for hydrometallurgical processing and extraction of materials Electrode (Re)manufacturing: Slurry mixing (centrifugal/three roll mill/silverson/ultra turrax/double planetary), drawdown, calendaring

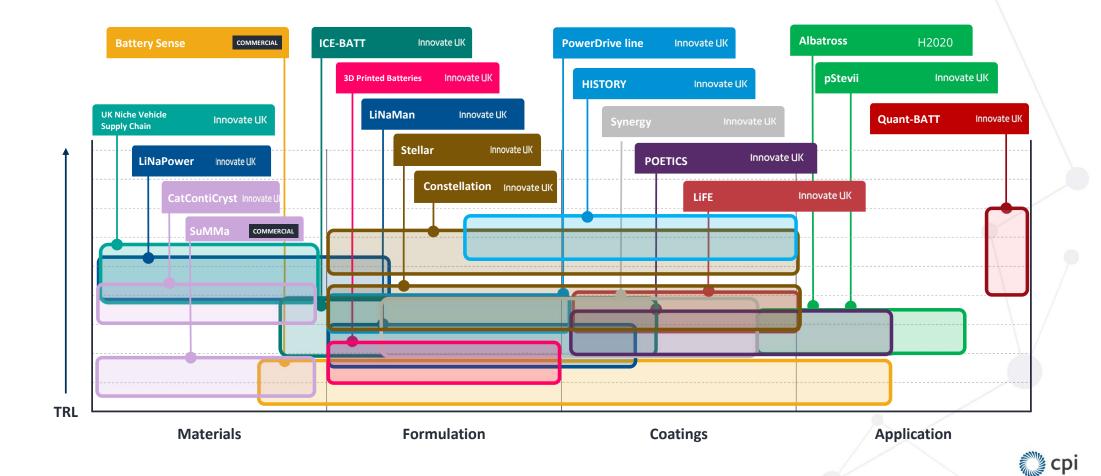
Battery materials and electrode testing

Physical properties: Powder bulk density analyser, nitrogen sorption (BET) inverse gas chromatography (IGC), force tensiometer, particle size analysis, UV-Vis, dynamic vapour sorption (DVS)

Chemical properties: X-ray diffraction (XRD), Raman, FTIR with hot stage, EDX, MP-AES, Triple Quad ICP-MS

Electrical and Electrochemical testing:

Potentiostats/battery cyclers for electrochemical testing of cells, 4 point probe, powder resistivity, impedance analyser



Microscopy: Materials characterisation. Field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), optical microscopy with hot stage, confocal, white light interferometry, cross-sectioning

Thermal: Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) cpi www.uk-cpi.com

Mapping of Relevant Projects

www.uk-cpi.com

Case studies (Approved by partners)

Scale-up evaluation of materials

Developing a niche vehicle battery cell supply chain

Building a supply chain to exploit a gap in niche EV development, hampered in the UK by a lack of availability and supply security of suitable battery cells and materials

HOW CPI HELPED

CPI worked on the 24month project as an academic partner to speciality chemicals and advanced materials manufacturer William Blythe Limited, supporting process development and scale-up work.

Assisting William Blythe's inhouse expertise, CPI developed a material in collaboration with AGM Batteries Limited, using its plant to produce cells for the project, which also includes Delta Motorsport.

CPI developed a range of cells, bringing together state-of-the-art facilities and industry expertise with customisation and predictive modelling to provide cost-effective solutions.

OUTCOMES AND IMPACT

- Enabling the development and scaleup of batteries for the niche vehicle industry
- Strengthening the UK's chemical industry in producing battery materials
- Help AGM Batteries move towards a Gigafactory

"This project will provide UK-based niche automotive manufactures with a home-grown supply chain option, bringing stability and assurance of product supply."

Steven Farmer Innovation Director, AGM Batteries

Scale-up evaluation of materials

Development and evaluation of anode material scale-up processes

Evaluation of the manufacture route for anode material

Process development Material analysis and performance evaluation Product scale-up and technical transfer

ion) (Coating and str

Evaluation and incorporation of novel materials to optimise performance in new formulations with a demonstration of scalability

Mixing	Milling	Material optimisation	Scale-up validation
Wide range of techniques for improving dispersion of materials, nanomaterials handling and formulation	Optimising dispersion via particle size reduction or de- agglomeration	Screening ink and coating properties	Demonstration and modelling of formulation at kg scale
 CAPABILITIES Relevant industry techniques such as planetary, high-shear, and centrifugal Nanomaterial handling capabilities 	 CAPABILITIES Bead mills and three-roll mills for improved dispersion Ball mills for decreased particle size 	 CAPABILITIES Plasma or wet chemistry functionalisation of powders Thermal treatment 	 CAPABILITIES CFD modelling of mix process at industrial scale Kilogram-scale mixing and milling options

/laterials

Formulation (Coatin

:uring) (Senso

High performance, low cost, and safe energy storage

Demonstration of a novel technology solution, based on sodium nickel chloride, to replace existing lithium-ion batteries in electric vehicles and in grid storage

HOW CPI HELPED

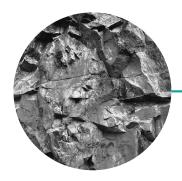
- Expertise in battery technology
- State-of-the-art facilities
- Innovate UK funding

PROJECT OUTPUTS

- Investigation of processing methods
- Successful proof of concept
- Proven large-scale and low-cost manufacturing
- Na-Ni-Cl battery proved successful in operation

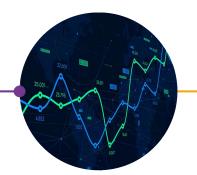
OUTCOMES AND IMPACT

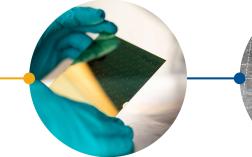
- Advancement of Na-Ni-Cl battery technology
- A prestigious £1million UK grant secured and closure of a significant capital raise
- Grant application for additional funding
- Demonstration of Na-Ni-Cl battery technology


"I am delighted with the outcomes of our collaboration with CPI. To truly enable widescale adoption of electric vehicles, it is accepted that new non-lithium and cobalt battery chemistries are needed. Together, we have demonstrated the incredible potential of LiNa's Na-based technology."

Gene Lewis

Chief Executive, LiNa Energy


Formulating electrolyte powder into inks for screen printing into a dense electrolyte film


Raw material characterisation

Formulate screen printing ink from electrolytes

Rheology process for the select ion of optimum ink formulations

Screen print to metal surface

Printed film characterisation

Next generation solid-state battery development

Develop a proof of concept pilot line and new scalable processes allowing for the manufacture of solid-state cell materials for plug in hybrid and electric vehicles.

OUTCOMES AND IMPACT

- Development and scaleup of cost-effective solidstate batteries with high power density and short charge time
- Helping in establishing a pre-pilot prototype cell manufacturing line

Ink development and print support

Formulation

🎽 cpi www.uk-cpi.com

Rapid evaluation of formulation and coatings to maximise learnings for novel materials and to optimise formulations

Formulation

High-throughput formulation Formulation screening to evaluate novel materials, optimise performance, or develop IP	Automated drawdown Screen formulations for coating performance	Material property characterisation Screening ink and coating properties	Experimental design and process analytics Digital techniques to enhance the optimisation of materials and formulations
 CAPABILITIES A highly skilled team dedicated to robot operations Automated dispensing of nanomaterials, solids, liquids, viscous liquids, semi-solids, and pastes 	 CAPABILITIES Doctor blade and slot die heads Syringe dispensing 	 CAPABILITIES Automated DSC, TGA, UV, IR, and gloss-to-screen materials properties Material printability using in-line rheology Coatings characterisation 	 CAPABILITIES Design of experiments Process analytics such as principle component analysis

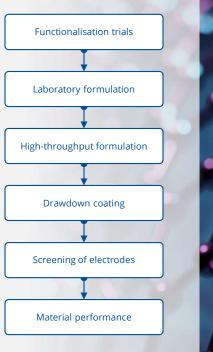
Materials

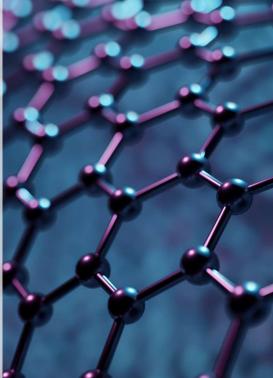
Coating and st

www.uk-cpi.com

Enhanced cathode materials for optimised battery packs

Optimising existing Li-ion cathode materials, exploring the inclusion of innovative carbon additives such as graphene and alternative solvents in the electrode structure.

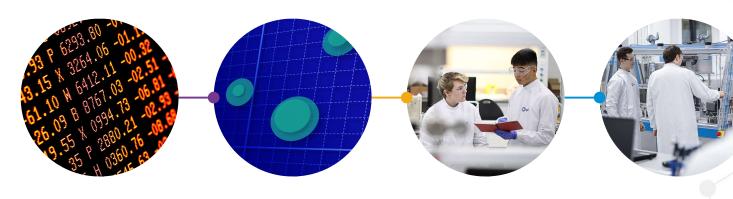



HOW CPI HELPED

- High-throughput formulation of actives, binders and carbons
- Functionalisation of innovative carbons for optimised dispersion
- Performance evaluation
 through characterisation

OUTCOMES AND IMPACT

- Developed optimised battery materials and formulations that enhance electrochemical performance and lifetime
- Support the supply chain for innovative cathode battery materials



Solvent and binder replacement for battery electrodes

Formulation

Collect data on solvent properties

Collect relevant data on a wide range of solvents, such as Hansen solubility parameters and boiling point

Creating solvent maps

Principle component analysis of the solvent parameter space and variability to allow the targeting of a subset of solvents

Design of experiments

Systematic approach to formulation development, reducing the experiments required and accelerating process development for the customer

Optimisation of formulation

High-throughput experimentation to rapidly produce and characterise formulations

Vaterials

Coating and str

Improving the performance of battery cell components

Demonstrating the improvements to the manufacturing efficiency, performance and environmental profile of cells optimised for the automotive market.

OUTCOMES AND IMPACT

- Improvements in raw materials and the formulation of anode and cathode systems used in lithium ion batteries
- Support the supply chain for the scale-up of innovative cathode and anode battery materials and cells

Coating and structuring

Optimisation of electrode structures through the controlled wet coating and vacuum deposition of novel materials

Curren Vicenen			
Vacuum deposition	Wet coating	Patterning	Surface engineering
Controlled, pure dense layers from 1 nm to 1000 nm in thickness	Dispersion and formulation layer deposits from 100 nm to 40 µm in thickness	Etching and ablation to pattern films from 1 nm to 1000 μm	Photonic, thermal, and plasma modification of surface properties and interface enhancement
CAPABILITIES	CAPABILITIES	CAPABILITIES	CAPABILITIES
 Batch systems for proof of concept R2R systems for scale-up and manufacture Atomic and molecular layer deposition, evaporation and sputtering 	 Wet coating techniques, including wire bar, spin coat, slot die, and screen printing Small and large area R2R Multiple pass processes Range of oven, IR, and UV drying techniques 	 Full suite of photo- lithographic tools Photoresist coating and developing Batch and stepper exposure tools R2R Femto second laser ablation capability 	 Full suite of surface treatment processes Plasma O₂,Ar, CF₄, N₂ Photonic treatments

Materials

Coating and structuring

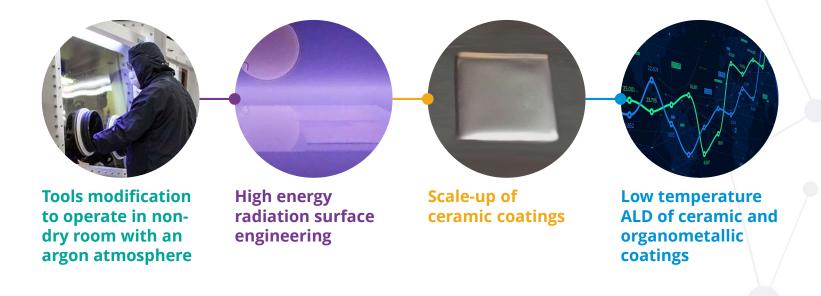
www.uk-cpi.com

Coating and structuring

Extending the lifetime of novel lithium-sulphur batteries

Assessing scalable processes for coating lithium foil, for nextgeneration manufacturing of lithium-metal batteries; increasing battery cycle lifetime and energy density for EVs.

OUTCOMES AND IMPACT


- Demonstrate the handling, storage and processing of lithium foils
- Developing processes for surface engineering, coating scale-up, and low temperature ALD recipes for ceramic and organometallic coatings on lithium foils

Coating and structuring

Surface engineering, ceramic and organometallic coatings of lithium foils

Coating and structuring

Sensors and embedded electronics

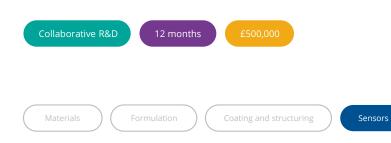
Enabling the cell-level monitoring of automotive battery systems through the integration of sensors, and systems, and with large area or embedded electronics

	2		
Design and development Designing proof of concept sensor systems including sensors and electronic systems	Device manufacturing Batch and R2R printing capability for scale up of sensor technology	Roll-to-roll integration New electronic form factors for BMS by combining sensors, circuitry, energy, processing, and methods of communications	Characterisation Comprehensive set of test and characterisation tools for both batch and continuous processes
 CAPABILITIES Sensor design and layout Electronic circuit design software suite Software development systems for multiple target platforms 	 CAPABILITIES Clean room capability to create sensors Roll-to-roll and batch scale manufacture Range of sensor types including temperature, pressure, and strain 	 CAPABILITIES Pick and place capability ICA and ACA dispensing systems Thermode / oven curing Glob top protection R2R convertor system 	 CAPABILITIES Roll-to-roll tester for device and process characterisation Electrical test laboratory Temperature and humidity characterisation and life testing

Materials

Coating and struct

Sensors



Sensors and embedded electronics

Printed sensors for monitoring battery life

Evaluate new types of sensors to feed data into a battery management system (BMS) enabling responses to battery health and charge, and to improve operational safety.

HOW CPI HELPED

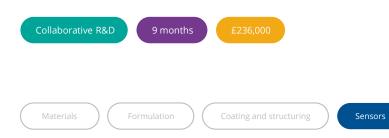
Development for the project used CPI's state-of-the-art electronics capabilities and expertise at our dedicated national centre. Developing the novel print techniques, resulted in a process for the production of printed induction coils on a large area substrate with integrated pick and place components. The process is capable of scale-up on to CPI's roll-to-roll printing equipment.

PROJECT OUTPUTS

- Demonstrating low cost device that will provide a richer more accurate picture of battery dynamics at cell level
- Reduced ageing time for batteries, saving costs.

"We are delighted to be collaborating with CPI and a number of organisations to further our aim of improving the range, health and safety of electric vehicle batteries. It is fascinating to see how innovative manufacturing processes can bring our technology closer to being deployed on the road"

Gary Kendall Director, CDO2



Sensors and embedded electronics

Printed temperature sensors for monitoring battery cells

Develop, demonstrate and validate processes to print temperature sensors for use in BMS that will be able to react to the changing state of battery health and charge and improve operational safety.

PROJECT OUTPUTS

- Demonstrate sensors that improve operational safety and allow for improved monitoring of the batteries
- Enabling longer life and increased range without altering the current design of EV, reducing environmental impact

CD

www.uk-cpi.com

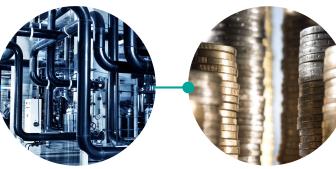
CASE STUDY

Recovering metals from electronic waste

Process development and scale-up – Deep Eutectic Solvent recovery of precious metals from e-waste

Literature review and evaluation

Developed understanding of current state of knowledge for all process steps, determining key areas of risk.


Valuable metal reclamation

Chemical extraction of valuable metals, including inductively coupled plasma mass spectrometry analysis.

Recycle stream development

Developing a process to recycle deep eutectic solvents (DES) after metal recovery.

Process scale up to pilot plant

Scaling up to 10 L, with future potential of scaling up to true pilot plant.

Engineering assessments

Assessing mass flow, heat flow and cost analysis of the process.

Sustainable batteries

Improving Lithium-ion battery recycling

Understanding and improving Lithium-ion battery recycling methodology for the extraction of precious materials. With exponentially increasing demand for portable energy storage devices arising from vehicle electrification, it is imperative to recycle end-of-life devices to ensure sustainability and to achieve netzero.

150 hours

Community Renewal Fund

Where are we unique?

- **Chemistry agnostic** formulation and materials process development
- **High-throughput formulation expertise** allowing rapid development of understanding
- Combination of vacuum and solution-based deposition processes
- Scalable evaluation of material synthesis, formulation and printing. From desk-based to R2R exemplification.
- **Connections** into supply-chain from raw material producers to cell manufacturers

Toll manufacturer of materials **High volume** cell manufacturer

Thank you

For more information visit www.uk-cpi.com

Robert Michell

Principal Scientist, CPI

Robert.mitchell@uk-cpi.com

twitter.com/**ukCPI**

facebook.com/**ukCPI**

linkedin.com/company/**uk-CPI**

youtube.com/**ukCPI** 🕞

V

f