## Maths at USI in Key Stage 1 and 2

## Parent Workshop

## AGENDA

- Maths at USI
- Schemes we use
- Arithmetic
- How our lessons look in KS1
- Parent Task KS1
- How our lessons look in Year 3 and 4
- Parent Task - Lower Key Stage 2
- How our lessons look in Upper Key Stage 2
- Parent Task Upper Key Stage 2
- Questions


## Primary Maths at USI

- 'Influenced, inspired and informed by the work of leading Maths researchers and practitioners across the world...'
- Offer a vast bank of clear, practical resources which we adapt to suit the needs of our children.
- Schemes now used in 140 countries and by 80\% UK primary schools.


## Why?

- The curriculum designed by White Rose Maths is split into schemes of learning for each year group. These schemes of learning break down what children should learn in each week of each term to master and build upon their foundational Maths skills.
- The White Rose Maths curriculum encourages the CPA approach (Concrete, Pictorial, Abstract), teaching children a deeper understanding of Maths problems.
- This approach helps children to visualise, describe and experiment with mathematical concepts, ultimately improving their mathematical fluency.

CPA Approach



## Providing children with a range of strategies

 Lesson structure

- Teaching slides adapted to suit class.
- Worksheets are used as and when the teacher feels necessary.
- Children are given CPA opportunities.
- Lessons start with warm up or addressing misconceptions.
- Other resources available for children who need additional support.
- Reasoning and problem solving used to challenge and stretch children.


## Weekly arithmetic lessons

Week 6


| 1 | 561-10 = |  | 13 | $3.5+4.781=$ |  | $\begin{aligned} & 0 \text { - SUPPORT } \\ & : 2 \frac{3}{8} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $9 \times 3=$ |  | 14 | $7 \times 2-5=$ |  |  |  |
| 3 | 6,388-4,861 = |  | 15 | $417 \times 53=$ |  |  |  |
| 4 | $9^{2}=$ |  | 16 | $\underline{1} \div 7=$ |  |  |  |
| 5 | $5 \times 4 \times 6=$ |  |  |  |  |  |  |
| 6 | $65 \times 8=$ |  | 17 | $0.8 \times 60=$ |  |  |  |
| 7 | $42 \div 7=$ |  | 18 | 3,222 $\div 18=$ |  |  |  |
| 8 | $\frac{5}{8}+\frac{1}{8}=$ |  | 19 | 30\% of $210=$ |  |  |  |
| 9 | $1.5 \times 100=$ |  | 20 | 4-1 $\frac{2}{7}=$ |  |  |  |
| 10 | $\frac{1}{5}+\frac{1}{15}=$ |  | 21 | $\frac{8}{10} \times \frac{1}{4}=$ | $\pm$ |  |  |
| 11 | 5,509 + 3,704 = |  | 22 | $2.3 \div 100=$ |  |  |  |
| 12 | $\frac{7}{10}$ of $700=$ |  | 23 | $4 \frac{1}{2} \times 3=$ |  |  |  |

Key Vocabulary


## Ratio

B

## Name

1 Complete the sentences.

## $6 \circlearrowleft 6$

For every 1 cherry, there are $\square$ plums.


For every 2 bananas, there are $\square$ carrots.

2 Complete the sentence.


For every 1 cylinder, there are $\square$ cubes.
(3)

Alex has these coins.

Whitney has these coins.


Alex says that for every 3 coins she has, Whitney has 5 coins.
Is Alex correct? yes no
Explain or show why.


The ratio of circles to squares is

$\square$


Complete the ratio in 2 different ways.
The ratio of rectangles to triangles is


5
Circle the equivalent ratios.

| $2: 10$ | $1: 5$ | $3: 12$ | $8: 4$ | $3: 15$ |
| :--- | :--- | :--- | :--- | :--- |

6 Part of a bar is shaded.


What fraction of the bar is shaded?
What is the ratio of shaded parts to non-shaded parts?

7 For every 4 boys in a class, there are 2 girls.


There are 24 children in the class. How many girls are there?

8 The ratio of red to blue cubes in a tower is 1:5 There are 6 red cubes in the tower. How many cubes are blue?
$\qquad$
9 Eva has some red and green grapes.
For every 5 green grapes, she has 3 red grapes. She has 35 green grapes.

How many more green grapes than red grapes does Eva have?

10 A field is drawn to scale.
Each square on the grid represents 3 m .


What is the length of the field?

Another field is 9 m long and 6 m wide. Draw this field on the grid above.

11 Here are two triangles. Triangle B is an enlargement of triangle A.


What is the scale factor of enlargement? $\qquad$

1 mark
White
Rose
Maths

## Assessment in Primary Maths


(6C8) Solve problems involving


## EXAMPLE SLIDES

AND PHOTOS FROM KS1

1. CPA
2. Group work
3. Explanation
4. Problem-solving 5. Fluency


## At Home Support

- TTRS
- Practical resources
- Quick, play-based learning.



## KS1

## PARENT TASK

- Kim, Max and Jo each have a piece of ribbon.


## How would you approach this question?

- How would you explain it to a 6-year-old?
- We would build up this in Y1 by using non-standard units: (blocks, toys, classroom equipment)
- Practical resources and lots of teacher modelling

Kim


## Max



Jo


- How much longer is Max's ribbon than Kim's?
- Max and Jo put their ribbons together.

How long are they altogether?

## EXAMPLE SLIDES

AND PHOTOS FROM LOWER KS2

## Draw a shape on the grid with an area of 5

## squares.

Do you think Mr Temple is correct?


The squares all need to make one shape and join at the sides

| 1 | 2 |  | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 5 | 6 | 7 |  |
|  | 8 | 9 | 10 | 11 |
|  |  |  | 12 | 13 |
|  |  |  |  |  |

There are 13 squares inside the shape.
The area of the shape is 13 squares.


## Lower KS2

## PARENT TASK

## Lower Key Stage 2 Parent task

How would you answer this question?
$86 \div 5$

1) $84 \div 3=$
2) $85 \div 3=$

We can use a tens and one frame or
3) $83 \div 3=$ a part-part-whole model

This help with understanding what they are learning.

## EXAMPLE SLIDES

AND PHOTOS FROM UPPER KS2


Maria, Jolie, Alessia, Noelia and Mr Tezgel are running around the USI astroturf pitch.
1 lap of the school pitch is 300 m .


## Noelia runs 900 m Mr Tezqgell mums 2,1100nm

How many more laps did Mr Tezgel run?

Mr Tezgel ran 4 more laps


TOGETHER
metres


Sophia has $\mathbf{2}$ litres of PRIME.

She pours 450 ml for Sama.
She then gives a quarter of a litre to Tia.

She drinks 350 ml herself.

How much PRIME is left? Give your answer in ml .


## UPPER KS2

## PARENT TASK

## Upper Key Stage 2 Parent task

How would you answer this question?

$$
\text { 1) } 42,384+32,313=
$$

We can use column addition, part whole models and bar models.

This helps with understanding what they are learning.
(1) Complete the calculations.
a)

b)

c) $5,236+424,850$

d) $30,594-15,423$

(2) Calculate the missing numbers. Show your method. a)

b)

| 750 | 1,500 |
| :--- | :--- | :--- |



